The Discontinuous Galerkin Finite
Element Method

Michadgl A. Saum
msaunm@rat h. ut k. edu

Department of Mathematics
University of Tennessee, Knoxville

The Discontinuous Galerkin Finite Element Method — p.1/41



What is DG?
DG Formulation
Data Structures
Solvers
Adaptivity
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The Discontinuous Galerkin (DG) Finite Element
Method (FEM) is a variant of the Standard
(Continuous) Galerkin (SG) FEM.

SG-FEM requires continuity of the solution along
element interfaces (edges).

DG-FEM does not require continuity of the
solution along edges.

DG methods have more degrees of freedom
(unknowns) to solve for than SG methods.
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DG methods have a number of advantages over
SG methods:
Assembly of stiffness matrix is easier to
Implement.
Refinement of triangles iIs easier to
Implement.
Adaptive methods are more flexible.

Natural Hierarchy allows for multilevel
methods to be integrated into solvers.

DG methods can support high order local
approximations that can vary nonuniformly over

the mesh.
DG methods are readily parallelizable.
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Let Q C R?, d = 2,3 be a bounded open polyhedral
domain with Lipshitz continuous boundary.

—Au=f In €2
U= gp onl'p (MP)
Vu-n=gy Only

where 02 := 1 = I'p U Iy and n 1s the unit normal
vector exterior to 2. We also assume that g 1(I'p) >

0, f € L*(Q), gy € L*(Ty).
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Let 7, = {K; :i=1,2,...,my} be afamily of star-like partitions of Q2
parameterized by 0 < h < 1.

The elements of 7}, satisfy the minimal angle condition.

Ty, is locally quasi-uniform.

El ={e=0K; NOK; : pqg_1(0K; N 0K;) > 0}

EB ={e=0K,;NoN: pqg_1(0K; NQ) > 0}

Ve € EB eithere CTpore CTyand & = EL U EB, where B = €5 U L and
EBENEE =0.

Ifec &L, thene=0KTNOK~ for KT, K~ € T;,.

Ife c £8,thene = KT NoQ = 0K N ON.

n™T is the unit normal to e that points outward from K .

On 7y, for r > 2, define the energy space £, and finite element space V" by

Bn= [[ B2®), V= ] P(K)

KGTh KGTh

where P (K') denotes the space of polynomials of total degree r — 1 = k > 1.
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First obtain weak formulation by multiplying (MP) by
v € V" and integrating over €):

- [ da = [ fods

Now decompose integrals into element contributions and
Integrate by parts.

Z—/K(Au)vdx: Z/Kfvda:

KeTy, KeTy,

ZLVU-V@C[:C—Z/@K%UOZSZ Z/Kfvda:

KeTy, KeT,, KeT,,
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Splitting Edge integrals.
ou ou ou
> (o)~ 2 o) 2 ()
KeT, € &

= (), ()

> (Vu, Vo) — <@,U>PD —

KETh

Resulting in:
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Two different ways of working with above internal edge
Integrals.

1 1
D. Arnold: ac — bd = 5(@ +b)(c—d)+ 5(@ —b)(c+ d).
G. Baker: ac — bd = a(c — d) + (a — b)d.

Defi ne
B(u,v) := Z (Vu, Vo) g
KETh
F(v) := Z (fav)K + <9N>U>PN
KETh

ou ou
J = ( — —
wo=(Gee) + = ({5} 1),
{8u} 1 <8u7L 8u>
where ¢ — = — +
on) |, 2\ On on
{%} _ Ou?
on} |,

Wl = (v —v7)

(Arnold) and,

e

(Baker) , and

e

on

e
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L eads to the DG formulation of (MP): Finduw € H! N E},
such that

B(u,v) — J(u,v) = F(v) Yv € Ej

Symmetric Interior Penalty Formulation (SIPG) involves
modifi cations;

Symmetrization:

B(u,v) — J(u,v) — J(v,u) = F(v) — <%79D>FD
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Penalization of jump terms;
Let 0 > 0 be apenalization parameter

Let J7(u,v) := Y (ofu], [v]), + (ou, v)p
ec&!
SIPG Formulation: Find v € H' N E}, such that
B(u,v) — J(u,v) — J(v,u) + J(u, v)

0
= F(v) — <6_279D> + <JgD,v>FD Vv € by,
I'p
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Find w, € V}" such that

a, (u),v) = F'(v), Yo eV,
where
o, (w0 = 2 (Vi Vol
= 2 (0 W) i~ e,
and D

F}?(U) = Z (f, U)K — <gD76nv — fyhe_lv>I‘D T <gN7v>FN
KeT,,
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The bilinear form a; (-, -) induces the following norm on
Ey:

ollin = ( S Vol

KeT,

> (h \o€+h!{0v}106)>1/2

ecETUED

Note that a) (-, -) is Symmetric, coercivefor o > o > 0 for
oo large enough.

Notethat 0 = o(~,r, h). Common to take

o = v(r — 1)?h*, and use the condition v > ~, for v,
large enough.
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The stiffness matrix has a very nice sparse block structure,
consisting of two types of matrix subblocks

Diagonal Blocks, which describe interaction of an
elements degrees of freedom with itself.

Off Diagonal Blocks, which describe interactions of
K dof with K~ dof through edge e.

The triangulation 7;, has imposed on it the constraint that
any element K can at most have 2 neighboring elements
K4, K5 dong edge e. Thisisthe case where one has a
hanging node on an edge, it isalso called a 1-irregular
mesh, or the two-neighbor condition.

This results in a maximum block bandwidth of 6 for the
stiffness matrix.
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Data objects include TRIANGLE, EDGE, and
NODE.

Objects stored in one long array of objects for
each type via doubly linked list structures.

Pointers are used to identify relations between
objects.

Hierarchial relations are stored in a 4-ary tree
structure.

PDE data (vectors, stiffness matrix blocks) are
stored separately from geometric data.
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IE+BE BLK object layout
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r 1.1
| p (L)
I'p Y I'p
L1
0o I, 1
—Au = 2r?sin(wz) sin(ry)  in Q)
u =0 onl'p

Exact solution: u = sin(7z) sin(7y).
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r 1.1
| p (L)
I'p () I'p
L1
0 I'p 1
—Au = 1287%sin(87x) sin(87y)  in Q
u =0 onl'p

Exact solution: v = sin(8nx) sin(8wy).
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(0.5,0.5)

I'p
—Au =0 In 2
uw=1r?3sin(2/30) onTp

Exact solution: u = /3 sin(2/36).
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A quick way of determining if a FEM is working

properly is if one obtains expected reductions in
error as one uniformly refines a mesh.

For h — h/2 uniformly in a mesh with elements
of degree p, one expects that

1 p+1

1 p
e =l ~ (5 ) = wllnco

As one can see In the following graphs, this IS
Indeed the case for the smooth functions (f3, f4),
but not necssarily the case for the point
singularity problem (f6).

The Discontinuous Galerkin Finite Element Method — p.20/41



31l ell 31 grd el

o o o
— ——o
T a. o __ 8 |a.. T o—
| R O\ O S ~AL TT—o—
+ S AL f¢) B + -~ O—__
. - — N o
T A — o T RN
~ o [e) o X . - < _
g | X F < a. — A T, -, A
o | ~ - .o - ~x AL
~ +.. S A ~ . R
- X.o : 0 - +.. A
< . ~ < o Sl
- . a-. o 7] N T+
0 TX. : RN - - B
T | m + s | [ . +
— -A- g2 \X\ 4 o -A- d2 \\\x +
+- d3 S - - M 3431 -
- d4 X X o =T DR
. TxoT ? _ o X
2 T T T T T T T T T T T g T T T T T T T T T T T
20 50 100 500 2000 5000 20000 20 50 100 500 2000 5000 20000
Triangles Triangles
3] e|l_{1_h}
o
o O—__
N °——o
3 S~ o
- S-AL T——o—
N + VN °C——o
é_ Xl T4 \‘~A\\\\\A
<« ) X e IRREYNG
? S + T-a
= X g
© hEIN ..
? ] —— d1 X .. +
3 -A- d2 ~ “ +
3 | % G T
1 — =T SX .
g Teex
T T T T T T T T T T T
20 50 100 500 2000 5000 20000
Triangles The Discontinuous Galerkin Finite Element Method — p.21/41

Tue Apr 18 08:08:18 2006



fallell f4ll grd el

-
g | &———= ? AT R
2 .~ ol T~ Sx._ BN \O\
Xl A \O '\,\'..* T~a A [e]
m i c. \\\ o = ~
S Kl “a S 3 SR
() ~ + .. C|D — ~ R . A\\
— ~ . . \A\ - N + \\\A
[Te) X N + \‘\\ X N o
T - : “ —-— d1 ) +
[ S ™ S
~ x + ? d |-a- a2 x.
—— dil ~ [ ~
5 -A- b — +- d3 ~ +
o) A- d2 RN + - d4 R
@] [+ d3 . _ X,
- d4 S 3 N
< T N
3 X ] X
é T T T T T T T T T T T T T T T T T T T T T T
20 50 100 500 2000 5000 20000 20 50 100 500 2000 5000 20000
Triangles Triangles
fa |l el|l_{1_h}
- t__’_‘f':&\!! o
? L T
[ XL S A T—o
- =2 R T—o
*: . TAL
A o
[ '~ ' T AL
o N . S~ a
CID - X +.. S A
A h ~
—— di +
- -A- 42 .
@ | |+ d3 S +
g -X- d4 T
8 S x
& T T T T T T T T T T T
—
20 50 100 500 2000 5000 20000
Triangles The Discontinuous Galerkin Finite Element Method — p.22/41

Tue Apr 18 08:08:18 2006



le-02

le-05 1le-04 1e-03

1le-06

0.4

0.2

0.1

f6lell f6 || grd e ||
o
. ]
o ! o
o
\O B \O\
Al \ - )
i ~ . o \
. T~ o B | -~ o
A TN S+ e ~
Txe T A \ X + RN T~
— Tl T °© T - + RN O\
o S AL \ o X. . T~s o
—— d1 DTN o 2 Ty s Tl
-4- d2 Tx e T Al \O = —o— dl R Ttal
Jd |+ d3 St | |-a- d2 xo o F e,
- d4 X T Al ~+- d3 oy R
\\-;:'\':\T_A §_ “X- d4 - . 4
- % o T
T T T T T T T T T T T T T T T T
10 50 100 500 5000 50000 10 50 100 500 5000 50000
Triangles Triangles
f6 || e ||_{1_h}
] o\
14 o
| ;':~\‘ ~ \\\\\\\c
H T A
N IR \O
N al
I s B
o AL
-A- d2 TN \O
~+- d3 Slo Al
“X- d4 ARG TR \O
XlTA
TR
Lela
T T T T T T T T
10 50 100 500 5000 50000
Triangles The Discontinuous Galerkin Finite Element Method — p.23/41

Tue Apr 18 08:08:18 2006



Since SIPG produces a symmetric, positive definite linear system to solve, CG and PCG
can be used.

Due to the natural level based tree hierarchy produced, multigrid can also be used.
PCG is used with MG as preconditioner.

The previous solution obtained is embedded into the new triangulation to obtain the
initial solution for each solve.

Point Gauss-Seidel is used as the MG smoother.

Local smoothing is implemented to improve solve time, i.e., on a particular level ¢ only
dof’s associated with levels up to £ — n are smoothed.

Capability exists to implement either V or W cycles.
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f3d2 Solve Time (s) f3d2 Solver Iterations
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f3d3 Solve Time (s) f3d3 Solver Iterations

o
O/ \
8 | o
o —— cg /
(o]
- -A- mg
o Py
o o
o ] & 7
3 Y
o
(=]
o —
-
3 # - "
(o3}
AL
0 I - A -
Y N
8 ] ll’. + h + ) A\ ~ o
- ¥ T4 AL
! B S TN
& sS4 A
o | i -+
o .;'
| — o - +I'
(] ]
Lr) 1
A a-a
I I I I I I I I I I I I I I I I I I I I I I
2e+02 1e+03 5e+03 2e+04 1le+05 5e+05 2e+02 1e+03 5e+03 2e+04 1le+05 5e+05
dof dof

Tue Apr 18 07:43:35 2006

The Discontinuous Galerkin Finite Element Method — p.27/41




f3d4 Solver lterations

f3d4 Solve Time (s)
_ 8 | O/
—— cg o —-— cg | —
= -A- mg -A- d
s |t pcg : %On(%
ol o
o —
N
o
O —
| i
—
o o _|
— Te} (¢]
g .
o 1 = 'A\
I’ h A
i+ -~
8 ] Il + - SO A
N e N
| ,I... . . ~ N O
o _| II . + A \A
S - T
&) = __1/ + '
0 o 4 N
i ~ o+, s
) , /
O 1 1
o & - A
Lo
— 1 | —
5e+02 5e+03 5e+04 5e+05 5e+02 5e+03 5e+04 5e+05
dof

dof

Tue Apr 18 07:43:35 2006

The Discontinuous Galerkin Finite Element Method — p.28/41



Uniform refinement is overkill for some problems. The idea of adaptive methods is to
utilize some sort of estimator to selectively choose specific elements to refine.

Residual based estimators utilize the previously obtained solution to identify candidates
for refinement and coarsening.

Local Problem based estimators solve local problems usually consisting of each element
and its immediate neighbors to identify candidates for refinement and coarsening.

An Adaptive Iterations consist of Solve-Estimate-Mark-Refine-Coarsen sequence.

Adaptive iterations terminate when the desired tolerance is achieved.
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DG allows a triangle to undergo regular refinement, i.e., each triangle is divided into four
new triangles, each similar to its parent.

We impose at most one hanging node per edge.
SG doesn’t allow hanging nodes to be present.

DG refinement allows one to maintain area and normal orientation for the inital mesh
triangles only; these quantities can be scaled appropiately for higher level (smaller)
elements.

Coarsening only occurs when all four children of a triangle are marked for coarsening.
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The following theorems stated without proof (see Karakashian
and Pascal,2004) provide information on residual based a
posteriori estimators used to aid in the determination of whether
to refi ne or coarsen individual elements.

Theorem. Lete = u — u;. Then

> IVelli < e S nkllf + Auflik

KeTy KeTy

+ ) hel[0n]12 4+ > helgn — 0|2

I B
ec& 665N

2R+ Y b gp — )

I B
ec& eEED
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Theorem. Quppose f isa piecewise polynomial on 7;,. Then

VK €7,
hi|lf + Aul|l% < c||Velk

Ve=KTNK &l
hel[Onuplle < ¢ ([ Velli+ + ([ Vellx-)
Ve=KTNoN e &x
helgn — Onuple < cl|Vellz+

for ~ large enough

VY RMIZA D b Mgp—wlE < e Y ([ Vellk
ec&! ecEB KeT,,
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DE1 P4, .10 DE1 P4, 210

Cralal @ Timal @ Cyclal @ Timal @
Mesh plat Mesh plat
M==h: datas3I4_@s 1.@ Me=h: datas33_@5 1.@
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DE1 PG, 2.10 DEI PE,2.10

Croler @ Timal @ Crclar @ Timal @
Mesh plot Mash
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DE1 PG, 2.10 DEI PE,2.10

Cyolal @ Timal @ Cyolal @ Timal @
Mesh plat Mesh plot
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Let QO C RY d = 2, 3 be abounded open polyhedral domain with
Lipshitz continuous boundary.

v

A%y = f In €2
{ U= gp onT
Vu-n=gy onT

where 0f2 ;= I and n Isthe unit normal vector exterior to 2. We
also assumethat g (I') > 0, f € L*(Q), gv € L*(I).

We have created an SIPG implementation for this problem (a dif-
ferent bilinear form). The following solution was obtained using

uniform refi nement with r = 5 for gp = gy = 0 with exact

solution: u = (1 — cos(27x))(1 — cos(27
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