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Overview
• What is DG?
• DG Formulation
• Data Structures
• Solvers
• Adaptivity
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What is DG?
• The Discontinuous Galerkin (DG) Finite Element

Method (FEM) is a variant of the Standard
(Continuous) Galerkin (SG) FEM.

• SG-FEM requires continuity of the solution along
element interfaces (edges).

• DG-FEM does not require continuity of the
solution along edges.

• DG methods have more degrees of freedom
(unknowns) to solve for than SG methods.
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DG Advantages
• DG methods have a number of advantages over

SG methods:
• Assembly of stiffness matrix is easier to

implement.
• Refinement of triangles is easier to

implement.
• Adaptive methods are more flexible.
• Natural Hierarchy allows for multilevel

methods to be integrated into solvers.
• DG methods can support high order local

approximations that can vary nonuniformly over
the mesh.

• DG methods are readily parallelizable.
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Model Problem
Let Ω ⊂ R

d, d = 2, 3 be a bounded open polyhedral
domain with Lipshitz continuous boundary.







−∆u = f in Ω

u = gD on ΓD

∇u · n = gN on ΓN

(MP)

where ∂Ω := Γ = ΓD ∪ ΓN and n is the unit normal

vector exterior to Ω. We also assume that µd−1(ΓD) >

0, f ∈ L2(Ω), gN ∈ L2(ΓN).
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Notation
• Let Th = {Ki : i = 1, 2, . . . , mh} be a family of star-like partitions of Ω

parameterized by 0 < h ≤ 1.

• The elements of Th satisfy the minimal angle condition.

• Th is locally quasi-uniform.

• EI = {e = ∂Kj ∩ ∂Kl : µd−1(∂Kj ∩ ∂Kl) > 0}

• EB = {e = ∂Kj ∩ ∂Ω : µd−1(∂Kj ∩ ∂Ω) > 0}

• ∀e ∈ EB , either e ⊂ ΓD or e ⊂ ΓN and E = EI ∪ EB , where EB = EB
D

∪ EB
N

and

EB
D

∩ EB
N

= ∅.

• If e ∈ EI , then e = ∂K+ ∩ ∂K− for K+, K− ∈ Th.

• If e ∈ EB , then e = ∂K+ ∩ ∂Ω ≡ ∂K ∩ ∂Ω.

• n+ is the unit normal to e that points outward from K+.

• On Th, for r ≥ 2, define the energy space Eh and finite element space V r
h

by

Eh =
K∈Th

H2(K), V r
h =

K∈Th

Pk(K)

where Pk(K) denotes the space of polynomials of total degree r − 1 ≡ k ≥ 1.
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DG Formulation
• First obtain weak formulation by multiplying (MP) by

v ∈ V r
h and integrating over Ω:

−

∫

Ω

(∆u)v dx =

∫

Ω

fv dx

• Now decompose integrals into element contributions and

integrate by parts:

∑

K∈Th

−

∫

K

(∆u)v dx =
∑

K∈Th

∫

K

fv dx

∑

K∈Th

∫

K

∇u · ∇v dx −
∑

K∈Th

∫

∂K

∂u

∂n
v ds =

∑

K∈Th

∫

K

fv dx
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DG Formulation, contd.
• Splitting Edge integrals:

∑

K∈Th

〈

∂u

∂n
, v

〉

∂K

=
∑

e∈ΓD

〈

∂u

∂n
, v

〉

e

+
∑

e∈ΓN

〈

∂u

∂n
, v

〉

e

+
∑

e∈EI

(〈

∂u+

∂n+
, v

〉

e

+

〈

∂u−

∂n−
, v

〉

e

)

• Resulting in:

K∈Th

(∇u,∇v)K −

�

∂u

∂n
, v

�

ΓD

−

e∈EI

� �

∂u+

∂n+
, v

�

e

−

�

∂u−

∂n+
, v

�

e

�

=
K∈Th

(f, v)K + 〈gN , v〉
ΓN
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DG Formulation, contd.
• Two different ways of working with above internal edge

integrals:
• D. Arnold: ac − bd =

1

2
(a + b)(c − d) +

1

2
(a − b)(c + d).

• G. Baker: ac − bd = a(c − d) + (a − b)d.

• Define
• B(u, v) :=

K∈Th

(∇u,∇v)K

• F (v) :=
K∈Th

(f, v)K + 〈gN , v〉
ΓN

• J(u, v) :=

�

∂u

∂n
, v

�

ΓD

+

e∈EI

� �

∂u

∂n

�

, [v]

�

e

• where

�

∂u

∂n

� ��
��
��
�

e

=
1

2
�

∂u+

∂n
+

∂u−

∂n

� ��
��
��
�

e

(Arnold) and,

•

�

∂u

∂n

� ��
��
��
�

e

=
∂u+

∂n

��
��
��
�

e

(Baker) , and

• [v]

��
�

e
=

�
v+ − v−

�
��
��
��
�

e

.
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SIPG Formulation
• Leads to the DG formulation of (MP): Find u ∈ H1 ∩ Eh

such that

B(u, v) − J(u, v) = F (v) ∀v ∈ Eh

• Symmetric Interior Penalty Formulation (SIPG) involves

modifications:

• Symmetrization:

B(u, v) − J(u, v) − J(v, u) = F (v) −

〈

∂v

∂n
, gD

〉

ΓD
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SIPG Formulation, contd.
• Penalization of jump terms:

• Let σ > 0 be a penalization parameter

• Let Jσ(u, v) :=
∑

e∈EI

〈σ[u], [v]〉e + 〈σu, v〉ΓD

• SIPG Formulation: Find u ∈ H1 ∩ Eh such that

B(u, v) − J(u, v) − J(v, u) + Jσ(u, v)

= F (v) −

〈

∂v

∂n
, gD

〉

ΓD

+ 〈σgD, v〉ΓD
∀v ∈ Eh
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DG FEM Formulation
Find uγ

h ∈ V r
h such that

aγ
h (uγ

h, v) = F γ
h (v), ∀v ∈ V r

h

where

aγ
h (uγ

h, v) =
∑

K∈Th

(∇uγ
h,∇v)K

−
∑

e∈EI∪EB
D

(

〈{∂nu
γ
h} , [v]〉e+〈{∂nv} , [uγ

h]〉e−γh−1
e 〈[uγ

h], [v]〉e

)

and

F γ
h (v) =

∑

K∈Th

(f, v)K −
〈

gD, ∂nv − γh−1
e v

〉

ΓD
+ 〈gN , v〉ΓN
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Energy Norm
• The bilinear form aγ

h(·, ·) induces the following norm on

Eh:

‖v‖1,h =

(

∑

K∈Th

‖∇v‖2
0,K

+
∑

e∈EI∪EB
D

(

h−1
e |[v]|20,e + he |{∂nv}|

2
0,e

)

)1/2

• Note that aγ
h(·, ·) is symmetric, coercive for σ > σ0 > 0 for

σ0 large enough.

• Note that σ = σ(γ, r, h). Common to take

σ = γ(r − 1)2h−1
e , and use the condition γ > γ0 for γ0

large enough.
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Stiffness Matrix Assembly
• The stiffness matrix has a very nice sparse block structure,

consisting of two types of matrix subblocks

• Diagonal Blocks, which describe interaction of an

elements degrees of freedom with itself.

• Off Diagonal Blocks, which describe interactions of

K+ dof with K− dof through edge e.

• The triangulation Th has imposed on it the constraint that

any element K can at most have 2 neighboring elements

K1,K2 along edge e. This is the case where one has a

hanging node on an edge, it is also called a 1-irregular

mesh, or the two-neighbor condition.

• This results in a maximum block bandwidth of 6 for the

stiffness matrix.
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Data Structures
• Data objects include TRIANGLE, EDGE, and

NODE.
• Objects stored in one long array of objects for

each type via doubly linked list structures.
• Pointers are used to identify relations between

objects.
• Hierarchial relations are stored in a 4-ary tree

structure.
• PDE data (vectors, stiffness matrix blocks) are

stored separately from geometric data.
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Data Structure Relations

ND

IE + BE

TRI

Hierarchial Tree PDE Data

BLK object layout

ND_BLK

IE_BLK

ENDP(0,1) TRI_BLK

(K+,K-)

OFF_DIAG_BLK

offset

BE_BLK

(K+)

ND(0,1,2)

EDGE(0,1,2)

KTree DIAG_BLK

offset

VECTORS

offset

Lvl 0 Lvl 1 Lvl 2 ... Lvl l ... Lvl L Avail

Used Avail

Leaf NLeaf Avail
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Test Problems - f3

x1

x2

(1, 1)

1

1

0

ΩΓD ΓD

ΓD

ΓD
{

−∆u = 2π2 sin(πx) sin(πy) in Ω

u = 0 on ΓD

Exact solution: u = sin(πx) sin(πy).

The Discontinuous Galerkin Finite Element Method – p.17/41



Test Problems - f4

x1

x2

(1, 1)

1

1

0

ΩΓD ΓD

ΓD

ΓD
{

−∆u = 128π2 sin(8πx) sin(8πy) in Ω

u = 0 on ΓD

Exact solution: u = sin(8πx) sin(8πy).
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Test Problems - f6

Ω(0, 0)

(0.5, 0.5)

ΓD

ΓD

ΓD

ΓD

ΓD

{

−∆u = 0 in Ω

u = r2/3 sin(2/3θ) on ΓD

Exact solution: u = r2/3 sin(2/3θ).
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FEM Error
• A quick way of determining if a FEM is working

properly is if one obtains expected reductions in
error as one uniformly refines a mesh.

• For h → h/2 uniformly in a mesh with elements
of degree p, one expects that

• ‖u − uh/2‖L2(Ω) ≈

(

1

2

)p+1

‖u − uh‖L2(Ω)

• ‖u − uh/2‖H1(Ω) ≈

(

1

2

)p

‖u − uh‖H1(Ω)

• As one can see in the following graphs, this is
indeed the case for the smooth functions (f3, f4),
but not necssarily the case for the point
singularity problem (f6).
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Uniform Refinement Error - f3
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Uniform Refinement Error - f4
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Uniform Refinement Error - f6
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Linear Solvers
• Since SIPG produces a symmetric, positive definite linear system to solve, CG and PCG

can be used.

• Due to the natural level based tree hierarchy produced, multigrid can also be used.

• PCG is used with MG as preconditioner.

• The previous solution obtained is embedded into the new triangulation to obtain the

initial solution for each solve.

• Point Gauss-Seidel is used as the MG smoother.

• Local smoothing is implemented to improve solve time, i.e., on a particular level ` only

dof’s associated with levels up to ` − n are smoothed.

• Capability exists to implement either V or W cycles.
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Solver Performance - f3d1
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Solver Performance - f3d2
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Solver Performance - f3d3
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Solver Performance - f3d4
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Adaptivity
• Uniform refinement is overkill for some problems. The idea of adaptive methods is to

utilize some sort of estimator to selectively choose specific elements to refine.

• Residual based estimators utilize the previously obtained solution to identify candidates

for refinement and coarsening.

• Local Problem based estimators solve local problems usually consisting of each element

and its immediate neighbors to identify candidates for refinement and coarsening.

• An Adaptive Iterations consist of Solve-Estimate-Mark-Refine-Coarsen sequence.

• Adaptive iterations terminate when the desired tolerance is achieved.

The Discontinuous Galerkin Finite Element Method – p.29/41



Element Refinement
• DG allows a triangle to undergo regular refinement, i.e., each triangle is divided into four

new triangles, each similar to its parent.

• We impose at most one hanging node per edge.

• SG doesn’t allow hanging nodes to be present.

• DG refinement allows one to maintain area and normal orientation for the inital mesh

triangles only; these quantities can be scaled appropiately for higher level (smaller)

elements.

• Coarsening only occurs when all four children of a triangle are marked for coarsening.
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A Posteriori Error Estimation
The following theorems stated without proof (see Karakashian

and Pascal,2004) provide information on residual based a

posteriori estimators used to aid in the determination of whether

to refine or coarsen individual elements.

Theorem. Let e = u − uγ
h. Then

∑

K∈Th

‖∇e‖2
K ≤ c

(

∑

K∈Th

h2
K‖f + ∆uγ

h‖
2
K

+
∑

e∈EI

he|[∂nuγ
h]|

2
e +

∑

e∈EB
N

he|gN − ∂nu
γ
h|

2
e

+ γ2
∑

e∈EI

h−1
e |[uγ

h]|
2
e + γ2

∑

e∈EB
D

h−1
e |gD − uγ

h|
2
e

)
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A Posteriori Error Est., contd
Theorem. Suppose f is a piecewise polynomial on Th. Then

• ∀K ∈ Th

h2
K‖f + ∆uγ

h‖
2
K ≤ c‖∇e‖2

K

• ∀e = K+ ∩ K− ∈ EI

he|[∂nu
γ
h]|

2
e ≤ c

(

‖∇e‖2
K+ + ‖∇e‖2

K−

)

• ∀e = K+ ∩ ∂Ω ∈ EB
N

he|gN − ∂nu
γ
h|

2
e ≤ c‖∇e‖2

K+

• for γ large enough

γ2
∑

e∈EI

h−1
e |[uγ

h]|
2
e +γ2

∑

e∈EB
D

h−1
e |[gD−uγ

h]|
2
e ≤ c

∑

K∈Th

‖∇e‖2
K
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f3 Adaptive Meshes
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f4 Adaptive Meshes

The Discontinuous Galerkin Finite Element Method – p.34/41



f6 Adaptive Meshes
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f6 Adaptive Meshes - Zoom
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f3 Adaptive Solution
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f4 Adaptive Solution
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f6 Adaptive Solution
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The Biharmonic Model Problem
Let Ω ⊂ R

d, d = 2, 3 be a bounded open polyhedral domain with

Lipshitz continuous boundary.














∆2u = f in Ω

u = gD on Γ

∇u · n = gN on Γ

where ∂Ω := Γ and n is the unit normal vector exterior to Ω. We

also assume that µd−1(Γ) > 0, f ∈ L2(Ω), gN ∈ L2(Γ).

We have created an SIPG implementation for this problem (a dif-

ferent bilinear form). The following solution was obtained using

uniform refinement with r = 5 for gD = gN = 0 with exact

solution: u = (1 − cos(2πx))(1 − cos(2πy))
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Biharmonic Computed Solution
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