Optimizing Floating Point
Calculations, |1

Michadgl A. Saum
msaum@rat h. ut k. edu

Department of Mathematics
University of Tennessee, Knoxville

Optimizing Floating Point Calculations, Il — p.1/28

Overview

 Algorithms for Cache.

« Compiler choices and options.
» High Performance libraries.
 Performance Monitoring.

Optimizing Floating Point Calculations, Il — p.2/28

Cache Misses

« Compulsory cache misses. These misses occur
when the cache line has to be brought into the
cache when first accessing it. Unavoidable.

 Capacity cache misses. These misses are related
to the limited size of the cache preventing all the
necessary data to be in cache simultaneously.
New data brought into cache may have to
overwrite older entries.

 Conflict cache misses. These misses occur In set
assoclative caches due to the fact that each line in
memory can only go into selected areas in cache.
This makes the effective cache size appear
smaller than the physical cache size.

Optimizing Floating Point Calculations, Il — p.3/28

Data Access Transformations

« Various techniques can be used to reduce
capacity misses for a particular level of cache:

 Loop Interchange/Reordering
 Loop Fusion
 Loop Blocking/Tiling
» Prefetching
« Jride s the distance (measured in words)
between two memory locations consecutively

accessed by a program. Unit stride Is best for
cache locality.

» Most cache optimizations target L2 cache,
although there are techniques which target
register and L1 cache.

Optimizing Floating Point Calculations, Il — p.4/28

LLoop Interchange/Reordering

» Works when order of loop execution is not
Important.

» FORTRAN accesses storage by column, Cby row.

// Original Loop nest:
for: = 1ton do
for j = 1tondo
sum-+= ali, j|
end for
end for

/I Interchanged L oop nest:
for j = 1ton do
for: = 1tondo
sum~+= ali, j|
end for
end for

Optimizing Floating Point Calculations, Il — p.5/28

_oop Fusion

 Takes two adjacent loops that have same iteration
space traversal and combines into single loop.

/[Original code:

for i = 1tondo
bli] = afi] + 1.0

end for

for i = 1ton do
cli] = bli] + 4.0

end for

/[After Loop Fusion:
fori = 1tondo

bli] = afi] + 1.0
cli] = b[7] + 4.0
end for

Optimizing Floating Point Calculations, Il — p.6/28

_oop Blocking/Tiling

Adds additional depth to a loop nest.
Improves data locality in cache.

1D or Line Blocking is useful when multiple long
vectors being operated on in same loop.

2D or Square Blocking is useful when large
matrix-vector or matrix-matrix operations occur
In same loop.

Assume in following examples that n, Is a value
which takes into account how much data can fit in
cache at the same time.

Optimizing Floating Point Calculations, Il — p.7/28

L_ine Blocking

// Original code:
for: =1tondo
bli] = ali] + ci]
OtherClalcs
end for

// Line Blocked Code:
for = 1ton by n, do
for it =+ tomin(n,? +ns — 1) do
blir] = alit] + clit]
OtherCalcs
end for
end for

Optimizing Floating Point Calculations, Il — p.8/28

Square Blocking

// Original code:
for i = 1tondo
for j = 1ton do
ali, 5] = blj,]
end for
end for

Il Square Blocked Code:
for i = 1ton by ns do
for j = 1ton by ns do
for it = itomin(n,i+ ns — 1) do
for jj = jtomin(n,j +ns — 1) do
alii, 55] = b[j3, i)
end for
end for
end for
end for

Optimizing Floating Point Calculations, Il — p.9/28

Data Prefetching

Frequently the CPU is not fed fast enough with
data from memory., which can be a bottleneck
resulting in the CPU waiting for data to process.

Data prefetching can be used to request data be
brought into cache before it Is to be used.

Successful technigue when the data stream can be
predicted correctly.

Successful when 1t doesn’t interfere with still
active references in cache.

Pentium 4 has assembler commands which can
be Inserted into code.

Much easier to do in Cthan FORTRAN.

Optimizing Floating Point Calculations, Il — p.10/28

LLoop Unrolling

« Use temporary variables to reduce the number of
loops executed by manually performing certain
operations.

 Usually used to increase instruction level
parallelism, blocking for registers.

// Original code:
tt =20
for i = 1ton do
tt = tt + ali] * alt]
end for

// Loop Unrolling:
I/l Works correctly only if n isdivisible by 4:
tt=20
for: =1ton by4do
tt =tt + ali] xali] + a[i + 1] x ali + 1] + a[i + 2] x ali + 2] 4+ a[i + 3] * a]i + 3]

end for Optimizing Floating Point Calculations, 11 —p.11/28

Data Layout Transformations

« Almed to address cache conflict misses and
Improve spatial locality.

« Modify how data structures or variables are laid
out In memory.

 Techniques include:

« Changing base addresses of variables,

» Modifying array sizes (Padding),

» Transposing array dimensions,

» Merging of arrays,

 Data copying, non-contiguous to contiguous.
« Techniques usually applied at compile time,

although some optimizations can also be applied
at run time.

Optimizing Floating Point Calculations, Il — p.12/28

Compiler Choices

« GNU compiler collection
» Avallable on all Linux machines
« gcc -C
o g++ - C++
« g77 - FORTRAN 77

e Intel Compiler Collection

» Available on agnesi , will be made available
on all desktop machines in the department
Spring/Summer 2006.

e | cc-C C+H+
e | fc-FORTRAN 77/ 90/ 95

Optimizing Floating Point Calculations, Il — p.13/28

Basic Compiler Optimizations

« Compilers will perform a wide variety of
optimizations, if asked.

Common subexpression elimination,

Strength reduction - replacement of arithmetic
expression by equivalent expression which
runs faster,

Loop invariant code moved outside of loop,
Constant value propagation/evaluation,

Induction variable simplification, mainly used
In calculation of array addresses,

register allocation and instruction scheduling.

Optimizing Floating Point Calculations, Il — p.14/28

Compiler Options

« Luckily, not all code optimizations need to be
done manually. Passing the right options to a
compiler will ask the compiler to attempt to
perform optimizations.

 Note that there Is no guaranty that aggressively
optimizing a code will improve the run time of
the code. Sometimes it runs slower. User beware!

» There are some common options to both the
GNU and Intel collections:

 Detalled descriptions of all options are contained
In the man pages for the compiler being used.

Optimizing Floating Point Calculations, Il — p.15/28

Compiler Options, contd.

« Optimization

* - Q0 - No optimization (Useful for
debugging),

« - Ol - Minimal optimizations attempted,
* - 2 - Medium optimizations peformed,
» - (B - Aggressive optimizations.

* Debugging
* - g - Include debugging symbol table In

executeable, useful for debugging but does
not cause program performance degradation.

* - pg - Produce profiling information to be
processed later.

- WAl | - Produce output for all warnings
d u ri n g CO m p i I ati O n . Optimizing Floating Point Calculations, 11 — p.16/28

Useful GNU Specific Options

e -ncpu=pent | uny - tune to the pentium4
everything about the generated code.

e - mar ch=pent | um} - generate instructions for
pentium4

e - nf pmat h=sse - use scaler floating point
Instructions present in SSE instruction set.

 -nBSe - enable use of SSE built-1n functions.
e -nBSe2 - enable use of SSE2 built-in fucntions.

* -mal 1 gn- doubl e - aligns doubles on a
two-word boundary.

« -funroll -1 oops - unroll loops whose
number of Iterations can be determined at
compile time or upon entry to the loo

Optimizing FIoEi)nzzj Point Calculations, Il — p.17/28

Useful Intel Specific Options

* -t pp7 - Optimize non-exclusively for pentium4
processor (same as - ncpu=pent i und GNU
option)

» - X\VAN - Optimize exclusively for pentium4
processor (same as - mar ch=pent i und GNU
option)

« - axWN - Generates code for pentium4 processor
and generic 1A-32 processor, which one Is
executed determined at run time.

e -1 p - Enable single file function inlining.
* -1 po - Enable multi-file function inlining.

» The Intel compilers have many more options
which can be used to fine tune an application.

Optimizing Floating Point Calculations, Il — p.18/28

BLAS/LAPACK/ATLAS
 Basic Linear Algebra Subroutines (BLAS)

_evel 1 - vector operations (dot product, axpy)
_evel 2 - matrix - vector operations

_evel 3 - matrix - matrix operations

 Built on top of BLAS is LAPACK which
provides a set of routines to do factorization and
solves among other things.

« Automatically Tuned Linear Algebra System
(ATLAS) when installed on a system empirically
determines and produces a set of BLAS routines
(some LAPACK also) which are optimized for
that particular system.

Optimizing Floating Point Calculations, Il — p.19/28

Intel MKL

Intel Math Kernel Libraries (MKL)

BLAS, Sparse BLAS, and LAPACK routines
ScaLAPACK routines

Sparse Solver

Vector Mathematical Library (VML) replacement
for scaler transcendental functions

Vector Statistical Distribution functions

Discrete Fourier and Fast Fourier Transform
Routines

One can in general link GNU compiled libraries
with Intel compiled libraries, although care
should be taken when doing this.

Optimizing Floating Point Calculations, Il — p.20/28

GNU Scientific Library (GSL)

While not necessarily optimized, GSL contains
many numerical routines which one might want
to have available but would not want to code.

Think C/ C++ version of Abramowitz and Segun,
Handbook of Mathematical Functions on
steroids.

The library provides a wide range of
mathematical routines such as random number
generators, special functions and least-squares
fitting. There are over 1000 functions in total.

Why code when the code already exists?

Optimizing Floating Point Calculations, Il — p.21/28

Performance Monitoring

» The oldest and the best way to evaluate a code’s
performance is to write information (timing,
counts) at various locations in the code.

« With the GNU compiler system, compiling with
the - pg flag will insert appropiate code to obtain
timing information on the program when run.

« When run the program will create a file called
gnon. out .

 This file can then be processed by the program
gpr of to obtain function (or even line!)
profiling information such as total number of
function calls and total time spent in each routine.

Optimizing Floating Point Calculations, Il — p.22/28

PAPI

« Performance API (PAPI) Is a set of routines
which allows one access to hardware
performance counters available on most modern
MICroprocessors.

* On Intel Pentium4, there is a limited set of
hardware counters available.

» The maximal useful set which can currently be
obtained for Pentium4 apps: TOT_CYC,
FP_OPS, TOT_IIS, TOT INS, RES_STL,

L1 DCM, L2 TCM, TLB DM, L2 LDM

« OP counts are somewhat suspect when mixing
SIMD/SSEZ2 vector FP operations with scaler FP
operations.

Optimizing Floating Point Calculations, Il — p.23/28

PAPI, contd.

* When installed on 1A-32 Linux based systems,
the Linux OS kernel must be patched. This
requires root access to the OS.

» PAPI can also obtain timing information with
very accurate timers, and can produce timing
characteristics for wall clock and cpu time.

 Excellent tool for identifying cache behavior with
minimal monitoring overhead.

Optimizing Floating Point Calculations, Il — p.24/28

Data Post Processing

 For large and complex programs, one can write
data to intermediate files which can then be
processed and analyzed by other programs.

« For most data post processing, | write files in
some sort of column oriented format.

» For example, at each time step | may write all
calculations associated with time ¢ to a file to be
processed later.

 There are many other plotting and visualization
programs out there. MATLAB is pretty good for
quick and dirty calculations/plots.

Optimizing Floating Point Calculations, Il — p.25/28

Post Processing, contd.

| use four basic programs to analyze data.

* gnhupl ot - quick and dirty UNIX plotting
(2D,3D) program

 R-SAS and MATLAB on steroids.
e pl ot nt v -old (~ 90’s), but easy format to use

 mesht v/ sil o-LLNL software which allows
visualization of large datasets associated with
large meshes. Can also be used to dump data in
checkpoint files which allows for restart
computations.

Optimizing Floating Point Calculations, Il — p.26/28

Conclusions

 To obtain the best performance from a computer
code, one should know what type of system one
IS running on and target for optimization areas

which can be targeted, I.e., cache locality, SIMD
extensions, etc.

 Does the approach work? Complex code adaptive
DG FEM for elliptic problem on square domain:
* No optimization: ~ 37.15 sec.
» gcc compiler opts only: ~ 21.53 sec.
» | cc compiler opts only: ~ 19.14 sec.

Optimizing Floating Point Calculations, Il — p.27/28

Conclusions, contd.

 Note that optimizing floating point performance
requires the right combination of good
programming technigues and compiler
optimizations.

* The Intel Pentium4 architechture is not a bad
floating point calculational platform, considering
It was not designed for that purpose.

» Even better floating point performance can be
obtained with CPU’s designed for calculations,
l.e., 64 bit CPU’s, more floating point registers,
differently designed caches, etc.

« All of the above tools work very well in the
Linux environment and are free!

Optimizing Floating Point Calculations, Il — p.28/28

	Overview
	Cache Misses
	Data Access Transformations
	Loop Interchange/Reordering
	Loop Fusion
	Loop Blocking/Tiling
	Line Blocking
	Square Blocking
	Data Prefetching
	Loop Unrolling
	Data Layout Transformations
	Compiler Choices
	Basic Compiler Optimizations
	Compiler Options
	Compiler Options, contd.
	Useful GNU Specific Options
	Useful Intel Specific Options
	BLAS/LAPACK/ATLAS
	Intel MKL
	GNU Scientific Library (GSL)
	Performance Monitoring
	PAPI
	PAPI, contd.
	Data Post Processing
	Post Processing, contd.
	Conclusions
	Conclusions, contd.

