
Optimizing Floating Point
Calculations, II

Michael A. Saum
msaum@math.utk.edu

Department of Mathematics

University of Tennessee, Knoxville

Optimizing Floating Point Calculations, II – p.1/28



Overview
• Algorithms for Cache.
• Compiler choices and options.
• High Performance libraries.
• Performance Monitoring.

Optimizing Floating Point Calculations, II – p.2/28



Cache Misses
• Compulsory cache misses. These misses occur

when the cache line has to be brought into the
cache when first accessing it. Unavoidable.

• Capacity cache misses. These misses are related
to the limited size of the cache preventing all the
necessary data to be in cache simultaneously.
New data brought into cache may have to
overwrite older entries.

• Conflict cache misses. These misses occur in set
associative caches due to the fact that each line in
memory can only go into selected areas in cache.
This makes the effective cache size appear
smaller than the physical cache size.

Optimizing Floating Point Calculations, II – p.3/28



Data Access Transformations
• Various techniques can be used to reduce

capacity misses for a particular level of cache:
• Loop Interchange/Reordering
• Loop Fusion
• Loop Blocking/Tiling
• Prefetching

• Stride is the distance (measured in words)
between two memory locations consecutively
accessed by a program. Unit stride is best for
cache locality.

• Most cache optimizations target L2 cache,
although there are techniques which target
register and L1 cache.

Optimizing Floating Point Calculations, II – p.4/28



Loop Interchange/Reordering
• Works when order of loop execution is not

important.
• FORTRAN accesses storage by column, C by row.

// Original Loop nest:

for i = 1 to n do
for j = 1 to n do

sum+= a[i, j]

end for
end for

// Interchanged Loop nest:

for j = 1 to n do
for i = 1 to n do

sum+= a[i, j]

end for
end for

Optimizing Floating Point Calculations, II – p.5/28



Loop Fusion
• Takes two adjacent loops that have same iteration

space traversal and combines into single loop.

// Original code:

for i = 1 to n do
b[i] = a[i] + 1.0

end for
for i = 1 to n do

c[i] = b[i] + 4.0

end for

// After Loop Fusion:

for i = 1 to n do
b[i] = a[i] + 1.0

c[i] = b[i] + 4.0

end for

Optimizing Floating Point Calculations, II – p.6/28



Loop Blocking/Tiling
• Adds additional depth to a loop nest.
• Improves data locality in cache.
• 1D or Line Blocking is useful when multiple long

vectors being operated on in same loop.
• 2D or Square Blocking is useful when large

matrix-vector or matrix-matrix operations occur
in same loop.

• Assume in following examples that ns is a value
which takes into account how much data can fit in
cache at the same time.

Optimizing Floating Point Calculations, II – p.7/28



Line Blocking

// Original code:
for i = 1 to n do

b[i] = a[i] + c[i]
OtherCalcs

end for

// Line Blocked Code:
for i = 1 to n by ns do

for ii = i to min(n, i + ns − 1) do
b[ii] = a[ii] + c[ii]
OtherCalcs

end for
end for

Optimizing Floating Point Calculations, II – p.8/28



Square Blocking
// Original code:

for i = 1 to n do
for j = 1 to n do

a[i, j] = b[j, i]

end for
end for

// Square Blocked Code:

for i = 1 to n by ns do
for j = 1 to n by ns do

for ii = i to min(n, i + ns − 1) do
for jj = j to min(n, j + ns − 1) do

a[ii, jj] = b[jj, ii]

end for
end for

end for
end for

Optimizing Floating Point Calculations, II – p.9/28



Data Prefetching
• Frequently the CPU is not fed fast enough with

data from memory., which can be a bottleneck
resulting in the CPU waiting for data to process.

• Data prefetching can be used to request data be
brought into cache before it is to be used.

• Successful technique when the data stream can be
predicted correctly.

• Successful when it doesn’t interfere with still
active references in cache.

• Pentium 4 has assembler commands which can
be inserted into code.

• Much easier to do in C than FORTRAN.

Optimizing Floating Point Calculations, II – p.10/28



Loop Unrolling
• Use temporary variables to reduce the number of

loops executed by manually performing certain
operations.

• Usually used to increase instruction level
parallelism, blocking for registers.

// Original code:

tt = 0

for i = 1 to n do
tt = tt + a[i] ∗ a[i]

end for

// Loop Unrolling:

// Works correctly only if n is divisible by 4:

tt = 0

for i = 1 to n by 4 do
tt = tt + a[i] ∗ a[i] + a[i + 1] ∗ a[i + 1] + a[i + 2] ∗ a[i + 2] + a[i + 3] ∗ a[i + 3]

end for Optimizing Floating Point Calculations, II – p.11/28



Data Layout Transformations
• Aimed to address cache conflict misses and

improve spatial locality.
• Modify how data structures or variables are laid

out in memory.
• Techniques include:

• Changing base addresses of variables,
• Modifying array sizes (Padding),
• Transposing array dimensions,
• Merging of arrays,
• Data copying, non-contiguous to contiguous.

• Techniques usually applied at compile time,
although some optimizations can also be applied
at run time.

Optimizing Floating Point Calculations, II – p.12/28



Compiler Choices
• GNU compiler collection

• Available on all Linux machines
• gcc - C
• g++ - C++
• g77 - FORTRAN 77

• Intel Compiler Collection
• Available on agnesi, will be made available

on all desktop machines in the department
Spring/Summer 2006.

• icc - C/C++
• ifc - FORTRAN 77/90/95

Optimizing Floating Point Calculations, II – p.13/28



Basic Compiler Optimizations
• Compilers will perform a wide variety of

optimizations, if asked.
• Common subexpression elimination,
• Strength reduction - replacement of arithmetic

expression by equivalent expression which
runs faster,

• Loop invariant code moved outside of loop,
• Constant value propagation/evaluation,
• induction variable simplification, mainly used

in calculation of array addresses,
• register allocation and instruction scheduling.

Optimizing Floating Point Calculations, II – p.14/28



Compiler Options
• Luckily, not all code optimizations need to be

done manually. Passing the right options to a
compiler will ask the compiler to attempt to
perform optimizations.

• Note that there is no guaranty that aggressively
optimizing a code will improve the run time of
the code. Sometimes it runs slower. User beware!

• There are some common options to both the
GNU and Intel collections:

• Detailed descriptions of all options are contained
in the man pages for the compiler being used.

Optimizing Floating Point Calculations, II – p.15/28



Compiler Options, contd.
• Optimization

• -O0 - No optimization (Useful for
debugging),

• -O1 - Minimal optimizations attempted,
• -O2 - Medium optimizations peformed,
• -O3 - Aggressive optimizations.

• Debugging
• -g - Include debugging symbol table in

executeable, useful for debugging but does
not cause program performance degradation.

• -pg - Produce profiling information to be
processed later.

• -Wall - Produce output for all warnings
during compilation. Optimizing Floating Point Calculations, II – p.16/28



Useful GNU Specific Options
• -mcpu=pentium4 - tune to the pentium4

everything about the generated code.
• -march=pentium4 - generate instructions for

pentium4
• -mfpmath=sse - use scaler floating point

instructions present in SSE instruction set.
• -msse - enable use of SSE built-in functions.
• -msse2 - enable use of SSE2 built-in fucntions.
• -malign-double - aligns doubles on a

two-word boundary.
• -funroll-loops - unroll loops whose

number of iterations can be determined at
compile time or upon entry to the loop.

• -finline-functions - integrate all simple
functions into their callers.

Optimizing Floating Point Calculations, II – p.17/28



Useful Intel Specific Options
• -tpp7 - Optimize non-exclusively for pentium4

processor (same as -mcpu=pentium4 GNU
option)

• -xWN - Optimize exclusively for pentium4
processor (same as -march=pentium4 GNU
option)

• -axWN - Generates code for pentium4 processor
and generic IA-32 processor, which one is
executed determined at run time.

• -ip - Enable single file function inlining.
• -ipo - Enable multi-file function inlining.
• The Intel compilers have many more options

which can be used to fine tune an application.
Optimizing Floating Point Calculations, II – p.18/28



BLAS/LAPACK/ATLAS
• Basic Linear Algebra Subroutines (BLAS)

• Level 1 - vector operations (dot product, axpy)
• Level 2 - matrix - vector operations
• Level 3 - matrix - matrix operations

• Built on top of BLAS is LAPACK which
provides a set of routines to do factorization and
solves among other things.

• Automatically Tuned Linear Algebra System
(ATLAS) when installed on a system empirically
determines and produces a set of BLAS routines
(some LAPACK also) which are optimized for
that particular system.

Optimizing Floating Point Calculations, II – p.19/28



Intel MKL
• Intel Math Kernel Libraries (MKL)
• BLAS, Sparse BLAS, and LAPACK routines
• ScaLAPACK routines
• Sparse Solver
• Vector Mathematical Library (VML) replacement

for scaler transcendental functions
• Vector Statistical Distribution functions
• Discrete Fourier and Fast Fourier Transform

Routines
• One can in general link GNU compiled libraries

with Intel compiled libraries, although care
should be taken when doing this.

Optimizing Floating Point Calculations, II – p.20/28



GNU Scientific Library (GSL)
• While not necessarily optimized, GSL contains

many numerical routines which one might want
to have available but would not want to code.

• Think C/C++ version of Abramowitz and Stegun,
Handbook of Mathematical Functions on
steroids.

• The library provides a wide range of
mathematical routines such as random number
generators, special functions and least-squares
fitting. There are over 1000 functions in total.

• Why code when the code already exists?

Optimizing Floating Point Calculations, II – p.21/28



Performance Monitoring
• The oldest and the best way to evaluate a code’s

performance is to write information (timing,
counts) at various locations in the code.

• With the GNU compiler system, compiling with
the -pg flag will insert appropiate code to obtain
timing information on the program when run.

• When run the program will create a file called
gmon.out.

• This file can then be processed by the program
gprof to obtain function (or even line!)
profiling information such as total number of
function calls and total time spent in each routine.

Optimizing Floating Point Calculations, II – p.22/28



PAPI
• Performance API (PAPI) is a set of routines

which allows one access to hardware
performance counters available on most modern
microprocessors.

• On Intel Pentium4, there is a limited set of
hardware counters available.

• The maximal useful set which can currently be
obtained for Pentium4 apps: TOT_CYC,
FP_OPS, TOT_IIS, TOT_INS, RES_STL,
L1_DCM, L2_TCM, TLB_DM, L2_LDM

• OP counts are somewhat suspect when mixing
SIMD/SSE2 vector FP operations with scaler FP
operations.

Optimizing Floating Point Calculations, II – p.23/28



PAPI, contd.
• When installed on IA-32 Linux based systems,

the Linux OS kernel must be patched. This
requires root access to the OS.

• PAPI can also obtain timing information with
very accurate timers, and can produce timing
characteristics for wall clock and cpu time.

• Excellent tool for identifying cache behavior with
minimal monitoring overhead.

Optimizing Floating Point Calculations, II – p.24/28



Data Post Processing
• For large and complex programs, one can write

data to intermediate files which can then be
processed and analyzed by other programs.

• For most data post processing, I write files in
some sort of column oriented format.

• For example, at each time step I may write all
calculations associated with time t to a file to be
processed later.

• There are many other plotting and visualization
programs out there. MATLAB is pretty good for
quick and dirty calculations/plots.

Optimizing Floating Point Calculations, II – p.25/28



Post Processing, contd.
I use four basic programs to analyze data.

• gnuplot - quick and dirty UNIX plotting
(2D,3D) program

• R - SAS and MATLAB on steroids.
• plotmtv - old (∼ 90’s), but easy format to use
• meshtv/silo - LLNL software which allows

visualization of large datasets associated with
large meshes. Can also be used to dump data in
checkpoint files which allows for restart
computations.

Optimizing Floating Point Calculations, II – p.26/28



Conclusions
• To obtain the best performance from a computer

code, one should know what type of system one
is running on and target for optimization areas
which can be targeted, i.e., cache locality, SIMD
extensions, etc.

• Does the approach work? Complex code adaptive
DG FEM for elliptic problem on square domain:
• No optimization: ∼ 37.15 sec.
• gcc compiler opts only: ∼ 21.53 sec.
• icc compiler opts only: ∼ 19.14 sec.

Optimizing Floating Point Calculations, II – p.27/28



Conclusions, contd.
• Note that optimizing floating point performance

requires the right combination of good
programming techniques and compiler
optimizations.

• The Intel Pentium4 architechture is not a bad
floating point calculational platform, considering
it was not designed for that purpose.

• Even better floating point performance can be
obtained with CPU’s designed for calculations,
i.e., 64 bit CPU’s, more floating point registers,
differently designed caches, etc.

• All of the above tools work very well in the
Linux environment and are free!

Optimizing Floating Point Calculations, II – p.28/28


	Overview
	Cache Misses
	Data Access Transformations
	Loop Interchange/Reordering
	Loop Fusion
	Loop Blocking/Tiling
	Line Blocking
	Square Blocking
	Data Prefetching
	Loop Unrolling
	Data Layout Transformations
	Compiler Choices
	Basic Compiler Optimizations
	Compiler Options
	Compiler Options, contd.
	Useful GNU Specific Options
	Useful Intel Specific Options
	BLAS/LAPACK/ATLAS
	Intel MKL
	GNU Scientific Library (GSL)
	Performance Monitoring
	PAPI
	PAPI, contd.
	Data Post Processing
	Post Processing, contd.
	Conclusions
	Conclusions, contd.

