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Contributions
Developed and implemented working adaptive versions of

DG-FEM for second and fourth order elliptic PDEs.

• Ell2 ∼ 13,000 lines of C code.

• Ell4 ∼ 15,000 lines of C code.

• Modular design allowed for ∼ 8,000 lines of Ell2 code to

be used in Ell4 without change.

• Implemented Linear Solvers: CG, MG, PCG/MG.

• Utilized existing state of the art software where possible

including ATLAS, Clapack, Triangle, PAPI, METIS,

and MeshTV/SILO
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Contribs, contd.
• Implemented Cache Blocking for Gauss-Seidel utilizing

ideas of Douglas et al. (2000).

• Designed and implemented data structures which work well

within an adaptive DG-FEM scientific computing

environment.

• Extended prior results of Karakashian and Pascal (2003,

2004) regarding DG formulation of second order elliptic

and biharmonic PDEs for Arnold and Baker formulations.
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Contribs, contd.
• Obtained explicit formulations of local problem right-hand

sides for Arnold and Baker formulations of the biharmonic

equation.

• Source Code will be packaged and made available in the

future.

• Ell2 and Ell4 provide an excellent platform for

investigating numerical characteristics of adaptive

DG-FEM PDE models.
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DG Overview
• The Discontinuous Galerkin (DG) Finite Element

Method (FEM) is a variant of the Standard
(Continuous) Galerkin (SG) FEM.

• SG-FEM requires continuity of the solution along
element interfaces (edges).

• DG-FEM does not require continuity of the
solution along edges.

• DG methods have more degrees of freedom
(unknowns) to solve for than SG methods.
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DG Advantages
• DG methods have what can be considered to be a number

of advantages over SG methods:

• Global stiffness matrix contains a very nice block

structure, our formulation produces a symmetric,

positive definite linear system to be solved.

• Regular triangle refinement produces a Natural

Hierarchy allowing for multilevel methods to be

integrated into solvers.

• DG methods can support high order local approximations

that can vary nonuniformly over the mesh.
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Ell2 – Model Problem
Let Ω ⊂ R

d,d = 2,3 be a bounded open polyhedral
domain with Lipshitz continuous boundary.







−∆u = f in Ω
u = gD on ΓD

∇u ·n = gN on ΓN

(MP)

where ∂ Ω := Γ = ΓD ∪ ΓN and n is the unit normal

vector exterior to Ω. We also assume that µd−1(ΓD) >

0, f ∈ L2(Ω), gN ∈ L2(ΓN).
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Notation
• Let

�

h = {Ki : i = 1,2, . . . ,mh} be a family of star-like partitions of Ω parameterized by

0 < h ≤ 1.

• The elements of

�

h satisfy the minimal angle condition.

• �

h is locally quasi-uniform.

• �I = {e = ∂Kj ∩∂Kl : µd−1(∂Kj ∩∂Kl) > 0}

• �B = {e = ∂Kj ∩∂Ω : µd−1(∂Kj ∩∂Ω) > 0}

• ∀e ∈

�B, either e ⊂ ΓD or e ⊂ ΓN and

�

=

�I ∪

�B, where

�B =

�B
D ∪

�B
N and

�B
D ∩

�B
N = /0.

• If e ∈

�I , then e = ∂K+ ∩∂K− for K+,K− ∈
�

h.

• If e ∈

�B, then e = ∂K+ ∩∂Ω ≡ ∂K ∩∂Ω.

• n+ is the unit normal to e that points outward from K+.

• On

�

h, for r ≥ 2, define the energy space Eh and finite element space Vr
h by

Eh = ∏
K∈

�

h

H2(K), V r
h = ∏

K∈

�

h

Pk(K)

where Pk(K) denotes the space of polynomials of total degree r−1 ≡ k ≥ 1.
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Weak Formulation
• First obtain weak formulation by multiplying (MP) by

v ∈V r
h and integrating over Ω:

−
∫

Ω
(∆u)v dx =

∫

Ω
f v dx

• Now decompose integrals into element contributions and

integrate by parts:

∑
K∈

�
h

−
∫

K
(∆u)v dx = ∑

K∈

�

h

∫

K
f v dx

∑
K∈

�

h

∫

K
∇u ·∇v dx− ∑

K∈

�

h

∫

∂K

∂ u
∂ n

v ds = ∑
K∈

�

h

∫

K
f v dx
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Weak Formulation, contd.
• Splitting Edge integrals:

∑
K∈

�

h

〈

∂ u
∂ n

,v

〉

∂K
= ∑

e∈ΓD

〈

∂ u
∂ n

,v

〉

e
+ ∑

e∈ΓN

〈

∂ u
∂ n

,v

〉

e

+ ∑
e∈

�I

(〈

∂ u+

∂ n+
,v

〉

e
+

〈

∂ u−

∂ n−
,v

〉

e

)

• Resulting in:

∑
K∈

�

h

(∇u,∇v)K −

〈

∂u
∂n

,v

〉

ΓD

− ∑
e∈

�I

(〈

∂u+

∂n+
,v

〉

e
−

〈

∂u−

∂n+
,v

〉

e

)

= ∑
K∈

�

h

( f ,v)K + 〈gN ,v〉ΓN
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Weak Formulation, contd.
• One can treat the above internal edge integrals using the

following identities:
• D. Arnold (Arnold, 1982): ac−bd =

1
2
(a+b)(c−d)+

1
2
(a−b)(c+d).

• G. Baker (Baker, 1977): ac−bd = a(c−d)+(a−b)d.

• Define
• B(u,v) := ∑

K∈

�

h

(∇u,∇v)K

• F(v) := ∑
K∈

�

h

( f ,v)K + 〈gN ,v〉ΓN

• J(u,v) :=

〈

∂u
∂n

,v

〉

ΓD

+ ∑
e∈

�I

〈{

∂u
∂n

}

, [v]

〉

e

• where

{

∂u
∂n

}
∣

∣

∣

∣

e
=

1
2

(

∂u+

∂n
+

∂u−

∂n

)
∣

∣

∣

∣

e
(Arnold) and,

•
{

∂u
∂n

}∣

∣

∣

∣

e
=

∂u+

∂n

∣

∣

∣

∣

e
(Baker) , and

• [v]
∣

∣

e =
(

v+ − v−
)

∣

∣

∣

∣

e
.
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SIPG Formulation
• Leads to a weak formulation of (MP): Find u ∈ H2(Ω) such

that

B(u,v)− J(u,v) = F(v) ∀v ∈ Eh

• Symmetric Interior Penalty Formulation (SIPG) involves

modifications:

• Symmetrization:

B(u,v)− J(u,v)− J(v,u) = F(v)−

〈

∂ v
∂ n

,gD

〉

ΓD

• Note that 〈·, [u]〉e∈

�I = 0 for u ∈ H1(Ω)∩Eh.
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SIPG Formulation, contd.
• Penalization of jump terms:

• Let γ > 0 be a penalization parameter

• Let Jγ(u,v) := ∑
e∈

�I

〈

γh−1
e [u], [v]

〉

e +
〈

γh−1
e u,v

〉

ΓD

• SIPG Formulation: Find u ∈ H1 ∩Eh such that

B(u,v)− J(u,v)− J(v,u)+ Jγ(u,v)

= F(v)−

〈

∂ v
∂ n

,gD

〉

ΓD

+
〈

γh−1
e gD,v

〉

ΓD
∀v ∈ Eh
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Ell2 – DG FEM Formulation
Find uγ

h ∈V r
h such that

aγ
h

(

uγ
h,v
)

= Fγ
h (v), ∀v ∈V r

h (1)

where

aγ
h

(

uγ
h,v
)

= ∑
K∈

�

h

(∇uγ
h,∇v)K

− ∑
e∈

�I∪

�B
D

(

〈{

∂nuγ
h

}

, [v]
〉

e+
〈

{∂nv} ,
[

uγ
h

]〉

e−γh−1
e

〈

[uγ
h], [v]

〉

e

)

(2)

and

Fγ
h (v) = ∑

K∈

�

h

( f ,v)K −
〈

gD,∂nv− γh−1
e v
〉

ΓD
+ 〈gN ,v〉ΓN

(3)
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Ell2 – Energy Norm
• The bilinear form aγ

h(·, ·) induces the following norm on Eh:

‖v‖1,h =

(

∑
K∈

�

h

‖∇v‖2
0,K

+ ∑
e∈

�I∪

�B
D

(

h−1
e |[v]|20,e +he |{∂nv}|20,e

)

)1/2

• Note that aγ
h(·, ·) is symmetric, coercive for γ > γ0 > 0 for

γ0 large enough.

• Note also that γ = γ(r). For second order elliptic problems,

it is common to take γ(r) = γc(r−1)2, and use the

condition γc > γ0 for γ0 large enough.
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Ell4 – Model Problem
The fourth order elliptic model problem under
consideration is:







∆2u = f in Ω
u = gD on Γ
∇u ·n = gN on Γ

(MP)

where Ω ⊂ R
d, d = 2,3 and ∂ Ω = Γ with n being the

unit outward normal vector to Γ.
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Ell4 – Energy Spaces
Let the energy spaces Eh be defined as

Eh = ∏
K∈

�

h

H4(K)

and the finite element spaces V r
h be defined as

V r
h = ∏

K∈
�

h

Pr−1(K)

where Pr−1(K) denotes the space of polynomials of to-

tal degree r−1 on K. Note that V r
h ⊂ Eh ⊂ L2(Ω), but

V r
h 6⊂ H2(Ω) and V r

h 6⊂ H1(Ω).
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Ell4 – DG FEM Formulation
Find uγ

h ∈V r
h such that

aγ
h

(

uγ
h,v
)

= Fγ
h (v), ∀v ∈V r

h (4)

where

aγ
h

(

uγ
h,v
)

= ∑
K∈

�

h

(∆uγ
h,∆v)K

+ ∑
e∈

�

(

〈

{∂n(∆v)} , [uγ
h]
〉

e −
〈

{∆v} ,
[

∂nuγ
h

]〉

e +
〈{

∂n(∆uγ
h)
}

, [v]
〉

e −
〈{

∆uγ
h

}

, [∂nv]
〉

e

+ γh−1
e

〈[

∂nuγ
h

]

, [∂nv]
〉

e + γh−3
e

〈

[uγ
h], [v]

〉

e

)

(5)

and

Fγ
h (v) = ∑

K∈

�

h

( f ,v)K + ∑
e∈Γ

(〈

gD,∂n(∆v)+ γh−3
e v
〉

e +
〈

gN ,γh−1
e ∂nv−∆v

〉

e

)

(6)
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Ell4 – Energy Norm
The bilinear form aγ

h(·, ·) induces the following norms on Eh:

‖v‖2,h =

(

∑
K∈

�

h

‖∆v‖2
0,K + ∑

e∈

�

(

h−3
e |[v]|20,e +h−1

e |[∂nv]|20,e +he|{∆v}|20,e +h3
e |{∂n(∆v)}|20,e

)

)1/2

(7)

and

‖v‖1,h =

(

∑
K∈

�

h

‖∇v‖2
0,K + ∑

e∈

�

(

h−1
e |[v]|20,e +he |{∂nv}|20,e

)

)1/2

(8)
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A Posteriori Error Estimation

• A posteriori error estimates rely on computed solutions to

provide indicators into regions of the domain where the

solution can be improved.

• Identifying the appropiate combination of the computed

solution, residuals, and boundary data to produce residual

based sharp a posteriori error indicators is the key

challenge.

• Many different types of estimators exist. For an excellent

summary of a posteriori error estimation, refer to Verfürth

(1995), Babuşka and Strouboulis (2001).
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A Posteriori Error Est., contd
The following theorem stated without proof

(Karakashian and Pascal, 2004) provides a residual based a

posteriori estimator for our second order elliptic problem.

Theorem. Let e = u−uγ
h. Then

∑
K∈

�

h

‖∇e‖2
K ≤ c

(

∑
K∈

�

h

h2
K‖ f +∆uγ

h‖
2
K

+ ∑
e∈

�I

he|[∂nuγ
h]|

2
e + ∑

e∈

�B
N

he|gN −∂nuγ
h|

2
e

+ γ2 ∑
e∈

�I

h−1
e |[uγ

h]|
2
e + γ2 ∑

e∈

�B
D

h−1
e |gD −uγ

h|
2
e

)

Note: The presence of γ2 is necessary, compare with only γ in the

bilinear form.
Adaptive DG-FEM Methods, June 9, 2006 – p.22/76



Adaptive Methods
• Uniform refinement is overkill for some problems. For

example, near a singular point the solution varies quite

rapidly, but far away from a singular point the solution may

not vary much at all.

• An Adaptive Iteration consists of a Solve, Estimate, Mark,

Refine, Coarsen sequence, usually abbreviated to SER or

Solve-Estimate-Refine.

• Adaptive iterations terminate when the desired estimator

tolerance is achieved, i.e., the adaptive scheme is

convergent.
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Adaptive Methods, contd.
• Very important to any adaptive scheme is the marking

strategy used to identify candidates for refinement and

coarsening.

• We utilize a modification of the marking strategy employed

by Dörfler (1996), whose scheme was proven to be

convergent.

• In a nutshell, after computing local estimators ηK ,∀K ∈ h,

sorting in decreasing order, we mark until we reach a

certain fraction θ ∈ (0,1) of the global estimator total θ .
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Dörfler Marking Strategy
Require: Fix θ ∈ (0,1)

Require: Fix ν ∈ (0,1), small

�

= /0

s = 0

τ = 1

while s < θ 2η2 � do
τ = τ −ν
for all K ∈

�

h do
if K is not marked then

if ηK > τηmax then
Mark K,

�

=

�

+K

s = s+η2
K

end if
end if

end for
end while
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Adaptive Methods, contd.
• Another strategy based on recent work by O. Karakashian

(Karakashian and Pascal, 2006) utilizes a combination of

triangle marking and edge marking (which induces triangle

marking) for refinement which produces a convergent

adaptive algorithm.

• It is common to use a fixed value for θ , noting that if θ ≈ 1

then most triangles will be chosen to be refined while if

θ ≈ 0 then very few triangles will be selected for

refinement.

• We have started investigation into choosing a variable θ
which has shown to work in practice, the theory is still in

the research phase.
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Data Structures
• C and FORTRAN concepts used for memory utilization (the

best of both worlds).

• Geometric data objects include TRIANGLE, EDGE, and

NODE.

• Objects stored in one long array for each data object type

and managed via doubly linked list structures.

• Pointers are used to identify relations between objects.

• Hierarchial relations are stored in a 4-ary tree structure

rooted in the initial mesh.

• PDE data (vectors, stiffness matrix blocks) are stored

separately from geometric data but follow the order of

storage of geometric data objects.
Adaptive DG-FEM Methods, June 9, 2006 – p.27/76



Data Structure Relations

ND

IE + BE

TRI Hierarchial Tree

PDE Data

ND_BLK

IE_BLK

ENDP(0,1)

TRI_BLK(K+,K-)

OFF_DIAG_BLK

offset

BE_BLK

(K+)

ND(0,1,2)

EDGE(0,1,2)

KTree

DIAG_BLK
offset

VECTORS

offset
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Ell2 – Test Problem f3
Test Problem - f3 Domain Ω: Figure 1







−∆u = 2π2 sin(πx)sin(πy) in Ω

u = 0 on ΓD

Exact solution: u = sin(πx)sin(πy).

x1

x2
(1,1)

1

1

0

ΩΓD ΓD

ΓD

ΓD

Figure 1: Square Domain
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Ell2 – Test Problem f4
Test Problem - f4 Domain Ω: Figure 1







−∆u = 128π2 sin(8πx)sin(8πy) in Ω

u = 0 on ΓD

Exact solution: u = sin(8πx)sin(8πy).
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Ell2 – Test Problem f6
Test Problem - f6 Domain Ω: Figure 2







∆u = 0 in Ω

u = r2/3 sin(2/3θ ) on ΓD

Exact solution: u = r2/3 sin(2/3θ ).

Ω(0,0)

(0.5,0.5)

ΓD

ΓD

ΓD

ΓD

ΓD

Figure 2: Notch Domain
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Peformance Optimization
Choice of compilers and compiler optimization flags
can affect program performance. The following
compilers and optimization levels are compared in
Figures 3–4:

• NoOpt: gcc -O0 - No Optimization
• O2Opt: gcc -O2 - Medium Optimization
• FullOpt: gcc - Aggressive Optimization
• InOpt: icc - Aggressive Optimization (Intel)
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Perf. Opt., contd.

FullOpt InOpt NoOpt O2Opt

Timing − Compiler Opts
f3d2F

Case

T
im

e 
(s

ec
)

0
20

40
60

80

Figure 3: Performance Opt. Time (s), f3, r = 3, Uniform, 393216 dof
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Perf. Opt., contd.

FullOpt InOpt NoOpt O2Opt

MFLOP/s − Compiler Opts
f3d2F

Case

0
50

10
0

15
0

20
0

Figure 4: Performance Opt. - MFLOP/s, f3, r = 3, Uniform, 393216 dof
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Cache Blocking
• Following ideas of Douglas et al. (2000), the basic idea is

to reuse cache levels (mainly L2) in the hardware memory

hierarchy as much as possible.

• This idea can be applied in an efficient manner for routines

which are repeated a fixed number of iterations over the

same data, such as Gauss-Seidel used as a smoother within

the Multigrid context.

• Partition the domain into Nb blocks and each block into Nc

subblocks where Nc = Ns +1, Ns being the fixed number of

sweeps desired.

• Nb determined so that all data associated with triangles in

each block will fit in L2 cache.
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Cache Blocking Partition

T11

T21 T31

T41

T12

T22 T32

T42

T13

T23 T33

T43

T14

T24 T34

T44

Figure 5: Block/SubBlock Partitioning for

�

with Nb = 4,Nc = 4,Ns = 3

Adaptive DG-FEM Methods, June 9, 2006 – p.36/76



Cache Blocking Schedule
• The subblocks should be visited in the following order in order to be consistent with

Gauss-Seidel sweeping through the complete domain three times:

• Primary Sweep:
• T14,T13,T12,T11,T14,T13,T12,T14,T13

• T24,T23,T22,T21,T24,T23,T22,T24,T23

• T34,T33,T32,T31,T34,T33,T32,T34,T33

• T44,T43,T42,T41,T44,T43,T42,T44,T43

• Backtracking Sweep:
• T11,T12

• T21,T22

• T31,T32

• T41,T42

• T11

• T21

• T31

• T41
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Cache Blocked Stiffness Matrix – f3
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Cache Blocked Stiffness Matrix – f6
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Cache Blocking and Data Conti-
guity

• Figures 6–9 illustrates the effect of utilizing cache blocking
coupled with Modified Block Sparse Row (MBSR) storage
schemes.
• NN_NN: No special performance optimizations.

• CB_NN: Cache Blocking only.

• NN_MB: MBSR storage.

• CB_MB: Cache Blocking and MBSR storage.

• Note the following:
• MBSR storage implies data contiguity of global stiffness matrix.

• Clear benefits in L2 cache misses using Cache Blocking.

• Clear benefits in TLB data misses using MBSR storage.

• Clear time savings using both.
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Cache Blocking Effects

CB_MB CB_NN NN_MB NN_NN

Timing − Cache Blocking
f3d2F

Case

T
im

e 
(s

ec
)

0
10

20
30

40
50

60

Figure 6: Cache Blocking - Time, f3, r = 3, Uniform
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Cache Blocking Effects, contd.

CB_MB CB_NN NN_MB NN_NN

MFLOP/s − Cache Blocking
f3d2F

Case

0
50

10
0

15
0

20
0

Figure 7: Cache Blocking - MFLOP/s, f3, r = 3, Uniform
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Cache Blocking Effects, contd.

CB_MB CB_NN NN_MB NN_NN

PAPI L2_TCM − Cache Blocking
f3d2F

Case

0.
0e

+
00

2.
0e

+
07

4.
0e

+
07

6.
0e

+
07

8.
0e

+
07

1.
0e

+
08

1.
2e

+
08

Figure 8: Cache Blocking - L2_TCM, f3, r = 3, Uniform
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Cache Blocking Effects, contd.

CB_MB CB_NN NN_MB NN_NN

PAPI TLB_DM − Cache Blocking
f3d2F

Case

0e
+

00
1e

+
07

2e
+

07
3e

+
07

Figure 9: Cache Blocking - TLB_DM, f3, r = 3, Uniform
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Linear Solvers
• Three different iterative solvers can be used to

solve the resulting linear systems.
• Conjugate Gradient (CG), Multigrid (MG), and

Preconditioned Conjugate Gradient (PCG/MG)
using MG as a preconditioner.

• MG (and PCG/MG) require a fixed number of
smoothing sweeps to dampen out low frequency
error components during the multigrid procedure.
Cache blocked Gauss-Seidel works well in this
regard.
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Linear Solver Comparisons

0 1 2 3 4 5

1
2

5
10

20
50

10
0

20
0

50
0

f3d2F Solver Iterations

aIter

0 1 2 3 4 5

1
2

5
10

20
50

10
0

20
0

50
0

0 1 2 3 4 5

1
2

5
10

20
50

10
0

20
0

50
0

cg00_0
mg00_0
pcg00_0

(a) Solver Iterations

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

f3d2F Solver Avg. Residual Log. Reduction Rate

aIter

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

cg00_0
mg00_0
pcg00_0

(b) Solver Avg. Log.

Residual Reduction Rate

Figure 10: Solver Comparison (Efficiency): f3, r = 3, Uniform
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Lin. Solver Comp., contd
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Figure 11: Solver Comparison (Timing): f3, r = 3, Uniform
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Lin. Solver Comp., contd

cg00_0 mg00_0 mg31_3 mg41_3 mg44_3 mg54_3 pcg00_0 pcg31_3 pcg41_3 pcg44_3 pcg54_3

Timing − f3 d2F

Case

T
im

e 
(s

ec
)

0
5

10
15

(a) Solver Time

cg00_0 mg00_0 mg31_3 mg41_3 mg44_3 mg54_3 pcg00_0 pcg31_3 pcg41_3 pcg44_3 pcg54_3

MFLOP/s − f3 d2F

Case

M
F

LO
P

/s

0
50

10
0

15
0

20
0

25
0

30
0

(b) Solver MFLOP/s

Figure 12: Solver Optimization Comparison : f3, r = 3, Uniform

Adaptive DG-FEM Methods, June 9, 2006 – p.48/76



Ell2 Results
What follows are selected charts and graphs
illustrating different aspects of Ell2 code performance.

• A priori error reduction in the energy norm under
uniform refinement.

• Adaptive error reduction in the energy norm.
• Effectivity indices for the residual estimator

described above.
• Adaptive meshes.
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Ell2 Error Energy Norm
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Ell2 Err. Energy, contd.
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Ell2 Err. Energy, contd.
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Ell2 Err. Energy, contd.
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Ell2 Adaptive Error Energy Norm
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Ell2 Adapt. Err. Energy, contd.
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Ell2 Adapt. Err. Energy, contd.
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Figure 19: Adaptive Error Energy Norm: f6, r = 3

Adaptive DG-FEM Methods, June 9, 2006 – p.56/76



Effectivity Indices
• Effectivity indices give insight as to how well the

estimator tracks the actual error.
• The following effectivity indice graphs chart the

effectivity index defined for the residual estimator

η �

h
=

(

∑
K∈

�

h

η2
K

)1/2

as

η =
η �

h

‖e‖1,h
.
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Ell2 Eff. Ind., contd.
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Ell2 Eff. Ind., contd.

1e+02 1e+03 1e+04 1e+05 1e+06

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

d1  Resid. Eff. Index
Baker Formulation

DOF

1e+02 1e+03 1e+04 1e+05 1e+06

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

1e+02 1e+03 1e+04 1e+05 1e+06

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

f3
f4
f6

Figure 21: Effectivity Indices, r = 2, Baker
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Ell2 Eff. Ind., contd.
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Figure 22: Effectivity Indices, r = 3, Arnold
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Ell2 Eff. Ind., contd.
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Figure 23: Effectivity Indices, r = 3, Baker
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Ell2 Eff. Ind., contd.
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Figure 24: Effectivity Indices, r = 4, Arnold
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Ell2 Eff. Ind., contd.
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Figure 25: Effectivity Indices, r = 4, Baker
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Estimators and Adaptive Meshes

• f3d1a est – UNIX

• f3d1a est – Windoze

• f3d2a est – UNIX

• f3d2a est – Windoze

• f4d1a est – UNIX

• f4d1a est – Windoze

• f6d2a est – UNIX

• f6d2a est – Windoze
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PLTMG Comparison
• A comparison with PLTMG (Bank, 1998)

indicates better performance of DG-Ell2
compared to PLTMG.

• PLTMG: f4, 31561 linear triangular elements,
16000 dof, ‖∇e‖ ≈ 9.99, ‖e‖ ≈ 5.24e−2, 4.1
sec.

• Ell2: f4, 5431 linear triangular elements, 16023
dof, ‖∇e‖ ≈ 3.39, ‖e‖ ≈ 1.8e−2, 4.2 sec.
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PLTMG Comp, contd.

Figure 26: PLTMG: f4, r = 2
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PLTMG Comp, contd.

Figure 27: Ell2: f4, r = 2
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Ell4 – Results
• The biharmonic problem is more difficult to solve than

second order elliptic because the stiffness matrix condition

number grows as O(h−4).

• For Ell4 test problems, typical to require between 50–150

PCG solver iterations to obtain accuracy of 10−13,

compared with 10–20 PCG solver iterations to reach same

accuracy for Ell2 test problems.

• Have implemented a variable V-cycle version of multilevel

solver, increasing the number of smoother iterations the

coarser the mesh, similar to that employed by

Gopalakrishnan and Kanschat (2003).
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Ell4 – Test Problem f2
Test Problem - f2 Domain Ω: Figure 28






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





∆2u = 288x2y2 −48y+8+72x2 +24y4 −288x2y

+72y2 −288xy2 +288xy−48y3 −48x+24x4 −48x3 in Ω

u = ∂nu = 0 on Γ

Exact solution: u = x2y2 (1− x)2 (1− y)2.
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Figure 28: Square Domain
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Ell4 – f2 Exact Solution
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Figure 29: f2 Exact Solution
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Ell4 – Computed Solution, f2

(a) Ell4: f2, r = 4 (b) Ell4: f2, r = 5

Figure 30: Ell4: f2
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Ell4 – Test Problem f4
Test Problem - f4
Domain Ω: Figure 28







∆2u = −16cos(2πx)π4 +64cos(2πx)π4 cos(2πy)−16cos(2πy)π4 in Ω

u = ∂nu = 0 on Γ

Exact solution: u = (1− cos(2πx))(1− cos(2πy)).
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Ell4 – f4 Exact Solution
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Figure 31: f4 Exact Solution
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Ell4 – Computed Solution, f4

(a) Ell4: f4, r = 4 (b) Ell4: f4, r = 5

Figure 32: Ell4: f4
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Future Directions
• Perform more extensive comparisons with other state of the

art FEM computer codes such as KASKADE, Alberta, and

deal.II.

• Improving data object and list level management in

adaptive environments.

• Integration of cache blocking concepts to the full mesh

hierarchy with Multigrid.

• Further optimization for L1 cache.

• Tuning of variable θ algorithms for marking.

• Include coarsening for elliptic problems.

• Move to time dependent problems, including parabolic and

Cahn-Hilliard.
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Future Directions
• Incorporate nonlinear solvers to handle nonlinear PDEs.

• Develop new sharp a posteriori estimates.

• Develop a “drastic cutting” strategy to reduce number of

adaptive iterations and quickly “zoom” in to the solution.

• Implement h–p a posteriori error estimators, i.e., make a

determination to refine/coarsen in space or finite element

polynomial degree, or both.

• Identify and implement new optimization techniques for

Multigrid, including preconditioners.

• Investigate the use of space-filling curves to obtain optimal

ordering for the various algorithms.

• Extend 2D results to 3D results.
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