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Contributions

Developed and implemented working adaptive versions of
DG-FEM for second and fourth order elliptic PDEs.

El | 2 ~ 13,000 lines of C code.
El | 4 ~ 15,000 lines of C code.

Modular design allowed for ~ 8,000 lines of El | 2 code to
be used in El | 4 without change.

Implemented Linear Solvers: CG, MG, PCG/MG.

Utilized existing state of the art software where possible
Including ATLAS, d apack, Tri angl e, PAPI , METI S,
and MeshTV/ SI LO
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Contribs, contd.

Implemented Cache Blocking for Gauss-Seidel utilizing
Ideas of Douglas et al. (2000).
Designed and implemented data structures which work well

within an adaptive DG-FEM scientific computing
environment.

PN

2004) regarding DG formulation of second order elliptic
and biharmonic PDEs for Arnold and Baker formulations.
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Contribs, contd.

Obtained explicit formulations of local problem right-hand
sides for Arnold and Baker formulations of the biharmonic
eguation.

Source Code will be packaged and made available in the
future.

El | 2 and El | 4 provide an excellent platform for
Investigating numerical characteristics of adaptive
DG-FEM PDE models.
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DG Overview

The Discontinuous Galerkin (DG) Finite Element
Method (FEM) Is a variant of the Standard
(Continuous) Galerkin (SG) FEM.

SG-FEM requires continuity of the solution along
element interfaces (edges).

DG-FEM does not require continuity of the
solution along edges.

DG methods have more degrees of freedom
(unknowns) to solve for than SG methods.
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DG Advantages

DG methods have what can be considered to be a number
of advantages over SG methods:

Global stiffness matrix contains a very nice block
structure, our formulation produces a symmetric,
positive definite linear system to be solved.

Regular triangle refinement produces a Natural
Hierarchy allowing for multilevel methods to be
Integrated into solvers.

DG methods can support high order local approximations
that can vary nonuniformly over the mesh.

‘ e r
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Ell2 — Model Problem

Let Q c RY d = 2,3 be a bounded open polyhedral
domain with Lipshitz continuous boundary.

—Au = f In Q
U=0p onlp (MP)
u-n=gn onln

where dQ =T =IpUIly and n iIs the unit normal
vector exterior to Q. We also assume that ug_1(I'p) >
0, f € L%(Q), gn € L2(TN).
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Notation

Let 7, ={Ki:i=1,2,...,my} beafamily of star-like partitions of Q parameterized by
O<h<1.

The elements of 9}, satisfy the minimal angle condition.

h islocally quasi-uniform.

é”:{&:mgmdm:mkﬂammdM)>0}
=1{e=0K;nNoQ: u4-1(dK;NaQ) > 0}

Vee@@B dthereclporecyand & = &' UEB, where 88 = 8 U &5 and
EBNER =0,

Ifec &', thene= 0K+ NJK~ for KT K~ € %.
If ec &B,thene= 0K+t NIQ =JdKNIQ.
n™ isthe unit normal to e that points outward from K.

On %, for r > 2, defi ne the energy space g, and fi nite element space \( by

En = H H<
Ke |l
where P (K) denotes the space of polynomials of total degreer —1=k > 1.
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Weak Formulation

First obtain weak formulation by multiplying (MP) by
v eV} and integrating over Q:

—/Q(Au)vdx:/gfvdx

Now decompose integrals into element contributions and
Integrate by parts:

Z /(Au vdx— /fvdx
Keh

/Du (v dx — / —vds_ /fvdx
Keﬂh Keﬁ oK O fh K
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Weak Formulation, contd.
Splitting Edge integrals:
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Weak Formulation, contd.

One can treat the above internal edge integrals using the
following identities:

D. Arnold (Arnold, 1982): ac—bd = %(a+ b)(c—d)+ %(a— b)(c+d).

G. Baker (Baker, 1977): ac—bd = a(c—d) + (a—b)d.

Define

B(u,v) := Z (Ou, Ov) ¢
Ke,

F<V) — Z (f7V)K+<gN7V>rN
Ke,

ou 1/0ut oJu
Where{%} e_é < an + dn) e(Arnold) and,
_|_
{@} _ Y Baker) , and
onj|. Jn|g

[VHe - (V+ _V_> :
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SIPG Formulation

Leads to a weak formulation of (MP): Find u € H2(Q) such
that
B(u,v) —J(u,v) =F(v) VveE,

Symmetric Interior Penalty Formulation (SIPG) involves
modifications:

Symmetrization:
oV
B(uY) - () - w0 = Fv) - ( 500 )
D

Note that (-, [u]) oo =0 for ue H}(Q)NE;,.

Adaptive DG-FEM Methods, June 9, 2006 — p.13/76



SIPG Formulation, contd.

Penalization of jump terms:
Let y > 0 be a penalization parameter

Let 3¥(u,v) i= Y (vhe U], V) + (Yhe Tu, V)

ecs
SIPG Formulation: Find u € H1NEy such that

B(u,v) —J(u,v) — J(v,u) + J¥(u,v)

oV

=F(v) — <%,9D>r + <yhglgD,v>rD Vv e Ep
D
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Ell2 - DG FEM Formulation

Find u! € Vf such that

a) (uh,v) =F/(v), weV, (1)
where
a (up,v) =y (Oub, Dv)k
Ke
) (<{0"ﬂ“rym}7[vl>e+<{ﬂnv},[um>e—vhel<[um,[v1>e>
ec&TUSE
(2)
and
F/v) =S (f.vk—(00.0v—yhe V) +(onV)r,  (3)

Ke
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Ell2 — Energy Norm

The bilinear form a/ (-, ) induces the following norm on Ej,:

2
lan= (3 103

Ke,

1/2
5 (hell[v]\%,e+he!{dnv}!ée))

ec&'UEE
Note that a/(-, ) is symmetric, coercive for y > yp > 0 for
Vo large enough.

Note also that y = y(r). For second order elliptic problems,
it is common to take y(r) = y(r — 1), and use the
condition y; > yp for yp large enough.

‘ e r
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Ell4 — Model Problem

The fourth order elliptic model problem under
consideration Is:

A%y = f in Q
U=(p onl (MP)
[Ju-n=gn onl

where Q c R9 d = 2.3 and dQ = I" with n being the
unit outward normal vector to I".
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Ell4 — Energy Spaces

et the energy spaces Ey, be defined as

En= [ H*K)

Ke. 9,

and the finite element spaces V|, be defined as

Vi = [ Pr-1(K)
Ke

where P, _1(K) denotes the space of polynomials of to-
tal degree r — 1 on K. Note that V! C E;, C L%(Q), but

VI ¢ H2(Q) and V! ¢ HY(Q).
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Ell4 —- DG FEM Formulation

Find u! € V{f such that

al(uhv) =R/(v), Wew (4)

where

ah (up,v) = > (Auh,Av)k
Ked
+ 5 (om0} 1), () [k (anaud)} )~ ({0} [0,
vt {[antl] 1], + yh® ([ M>e) ©
and
Fa (V)= 5 (f,vk+ Z ({9, Gn(AV) + g V) + (g, Yhe tov —AV) ) (6)
Ke ec
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Ell4 — Energy Norm

The bilinear form ahV (+,-) induces the following norms on Ey,:

1/2
||v||2,h:(z v+ 3 (helvfBe+het [anv]é,e+he{Av}|%,e+h2{anmv)}%,e))
K

€% ecé&
(7)
and
1/2
HVHLh_< IOV§k + V(5.6 + e l{nV}] ) (8)
Kezﬂh eezéa( ° Oe)
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A Posteriori Error Estimation

A posteriori error estimates rely on computed solutions to
provide indicators into regions of the domain where the
solution can be improved.

Identifying the appropiate combination of the computed
solution, residuals, and boundary data to produce residual
based sharp a posteriori error indicators is the key
challenge.

Many different types of estimators exist. For an excellent
summary of a posteriori error estimation, refer to Verftrth
(1995), Babuska and Strouboulis (2001).
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A Posteriori Error Est., contd

The following theorem stated without proof
(Karakashian and Pascal, 2004) provides a residual based a
posteriori estimator for our second order elliptic problem.

Theorem. Let e=u—u/. Then

Y 06|z <c( Y mlf+aul
Ke I, Ke

+ > e [Onuy] & + > he|gn — dnu |2

ecs’ ecéy

Y R+ Y he Yoo —uf?)
ecéd’! ecéS
Note: The presence of y? is necessary, compare with only y in the

bilinear form.
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Adaptive Methods

Uniform refinement is overkill for some problems. For
example, near a singular point the solution varies quite
rapidly, but far away from a singular point the solution may
not vary much at all.

An Adaptive Iteration consists of a Solve, Estimate, Mark,
Refine, Coarsen sequence, usually abbreviated to SER or
Solve-Estimate-Refine.

Adaptive iterations terminate when the desired estimator
tolerance Is achieved, I.e., the adaptive scheme is
convergent.
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Adaptive Methods, contd.

Very important to any adaptive scheme is the marking
strategy used to identify candidates for refinement and
coarsening.

We utilize a modification of the marking strategy employed
by Dorfler (1996), whose scheme was proven to be
convergent.

In a nutshell, after computing local estimators ng, VK € %,
sorting In decreasing order, we mark until we reach a
certain fraction 8 € (0,1) of the global estimator total 6.
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Dorfler Marking Strategy

Require: Fix 8 € (0,1)
Require: Fix v € (0,1), small

S =0

s=0

T=1

whiles < 62n3 do
T=T—V

for all K € %, do
If K isnot marked then
If Nk > TNmax then
Mak K, . =.+K
S=S+n3
end if
end if
end for
end while
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Adaptive Methods, contd.

Another strategy based on recent work by O. Karakashian
triangle marking and edge marking (which induces triangle
marking) for refinement which produces a convergent
adaptive algorithm.

It is common to use a fixed value for 8, noting that if 6 ~ 1
then most triangles will be chosen to be refined while if

6 ~ 0 then very few triangles will be selected for
refinement.

We have started investigation into choosing a variable 6
which has shown to work in practice, the theory is still In
the research phase.

Adaptive DG-FEM Methods, June 9, 2006 — p.26/76



ur

Data Structures

C and FORTRAN concepts used for memory utilization (the
best of both worlds).

Geometric data objects include TRIANGLE, EDGE, and
NODE.

Objects stored in one long array for each data object type
and managed via doubly linked list structures.

Pointers are used to identify relations between objects.

Hierarchial relations are stored in a 4-ary tree structure
rooted in the initial mesh.

PDE data (vectors, stiffness matrix blocks) are stored
separately from geometric data but follow the order of
storage of geometric data objects.
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Data Structure Relations

IE + BE

(K+,K-)
EDGE(0,1,2)

(K+)

ENDP(0,1)

ND

N

ND(0,1,2)

TRI

\

Hierarchial Tree

—

DIAG_BLK

~

OFF DIAG BLK

PDE Data
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Ell2 — Test Problem 3

Test Problem - f3 Domain Q: Figure 1

—Au = 2msin(mx)sin(my)  in Q

u=~0 onlp

Exact solution: u = sin(7x) sin(1y).

1 : D . (17 1)
D Q )
X1
0 o 1

Figure 1: square Domain
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Ell2 — Test Problem f4

Test Problem - f4 Domain Q: Figure 1

,
—Au = 1287?sin(8mx)sin(8my)  in Q

u=~0 onlp

\

Exact solution: u = sin(87x)sin(8y).
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Ell2 — Test Problem {6

Test Problem - f6 Domain Q: Figure 2

Au=0 in Q
u=r?%3sin(2/30) onTlp

Exact solution: u=r?3sin(2/36).
D  (0.5,0.5)

0» Q |'P

Figure 2 Notch Domain
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Peformance Optimization

Choice of compilers and compiler optimization flags
can affect program performance. The following

compilers and optimization levels are compared In
Figures 3—4.

NoOpt: gcc - Q0 - No Optimization
O20pt: gcc - A2 - Medium Optimization
FullOpt: gcc - Aggressive Optimization
InOpt: | cc - Aggressive Optimization (Intel)
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Perf. Opt., contd.

Timing — Compiler Opts
f3d2F

o

Q

2
“ .

Time (sec)
60 80

40

20

FullOpt InOpt NoOpt 020pt

Case

FI gure 3 Performance Opt. Time (), 3, r = 3, Uniform, 393216 dof
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Perf. Opt., contd.

MFLOP/s — Compiler Opts
f3d2F

“ o - I I I

FullOpt InOpt NoOpt 020pt
Case

200

150

100

50

Flgure 4: performance Opt. - MFLOPYs, 13, r = 3, Uniform, 393216 dof
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Cache Blocking

Following ideas of Douglas et al. (2000), the basic idea is
to reuse cache levels (mainly L2) in the hardware memory
hierarchy as much as possible.

This idea can be applied in an efficient manner for routines
which are repeated a fixed number of iterations over the
same data, such as Gauss-Seidel used as a smoother within
the Multigrid context.

Partition the domain into N, blocks and each block into N¢
subblocks where N; = Ns—+ 1, Ng being the fixed number of
sweeps desired.

Ny determined so that all data associated with triangles in
each block will fit in L2 cache.
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Cache Blocking Partition

B
Ti3
2
T11
T21]Ta1
}
T23
T24

_l
( 3

B

FIgure 3: slock/subBlock Partitioning for 7 with Ny = 4,Ng = 4N = 3

‘ e r
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Cache Blocking Schedule

The subblocks should be visited in the following order in order to be consistent with
Gauss-Seidel sweeping through the complete domain three times:

Primary Sweep:
T14, T13, T12, T11, T1a, T13, T12, T14, Ta3
T24, T23, T22, T21, Toa, T2s, T2z, To4, T2z
T34, T33, T32, T31, T34, Ta3, T3z, T34, T3z
Ta4,Ta3, Taz, Tax, Taa, T4z, Ta2, Taa, Ta3
Backtracking Sweep:
T11, T2
To1, T22
Ta1, T2
Ta1, Ta2
T11
T21
Ta1
Ta1
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CacheBlocked Stiffness Matrix — 3

i

LEAFf3d1AR_A: alter=4 L =3 NT =280
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CacheBlocked Stiffness Matrix — f6

LEAF f6d2AR_A: alter=8 L=8 NT =198
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Cache Blocking and Data Conti-
guity

Figures 6-9 illustrates the effect of utilizing cache blocking
coupled with Modified Block Sparse Row (MBSR) storage

schemes.
NN_NN: No specia performance optimizations.

CB_NN: Cache Blocking only.
NN_MB: MBSR storage.
CB_MB: Cache Blocking and MBSR storage.

Note the following:
MBSR storage implies data contiguity of global stiffness matrix.

Clear benefi tsin L2 cache misses using Cache Blocking.
Clear benefi tsin TLB data misses using MBSR storage.

Clear time savings using both.
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Cache Blocking Effects

Timing — Cache Blocking
f3d2F

Time (sec)
30 40 50 60

20

10

CB_MB CB_NN NN_MB NN_NN

Case

Flgure 6: Cache Blocking - Time, f3, r = 3, Uniform
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Cache Blocking Effects, contd.

MFLOP/s — Cache Blocking
f3d2F

S -
3
S
o
CB_MB CB_NN NN_MB NN_NN
Case

Flgure [ Cache Blocking - MFLOP/s, f3, r = 3, Uniform

00

50

00

50
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Cache Blocking Effects, contd.

PAPI L2_TCM - Cache Blocking
f3d2F

0.0e+00 2.0e+07 4.0e+07 6.0e+07 8.0e+07 1.0e+08 1.2e+08

CB_MB CB_NN NN_MB NN_NN

Case

Flgure 8: CacheBlocki ng-L2 TCM, f3, r = 3, Uniform
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Cache Blocking Effects, contd.

PAPI TLB_DM - Cache Blocking
f3d2F

~
o
? -
[0
o
o
? -
[0}
N
~
o
? 4
[
-
CB_MB CB_NN NN_MB NN_NN
Case

Flgure O: cache Blocking - TLB_DM, f3, r = 3, Uniform

+00
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|_1near Solvers

Three different iterative solvers can be used to
solve the resulting linear systems.

Conjugate Gradient (CG), Multigrid (MG), and
Preconditioned Conjugate Gradient (PCG/MG)
using MG as a preconditioner.

MG (and PCG/MG) require a fixed number of
smoothing sweeps to dampen out low frequency
error components during the multigrid procedure.
Cache blocked Gauss-Seidel works well in this
regard.
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Linear Solver Comparisons

lllllllllllllllllllll

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

(a) Solver Iterations (b) Solver Avg. Log.
Residual Reduction Rate

Figure 10: solver Comparison (Effi ciency): £3, r = 3, Uniform
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Lin. Solver Comp., contd

f3d2F Solver Time/dof

————————————————————————————

(a) Solver Time/dof (b) Solver MFLOP/s

Figure 11: solver comparison (Timing): £3, r = 3, Uniform
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Lin. Solver Comp., contd

Timing - f3 d2F MFLOP/s - {3 d2F

°
s |
g
v
a
S
o
s B+
D D D D Q
s
g
D D D D D D |
H
L G O S S I S S S SO SO
€g00_0 mg00_0 mg31_3 mgdl 3 mgad_3 mg54_3 pcg00_0 pcg3l 3 pegdl 3 pcgdd 3 peg54_3 cg00_0 mg00_0 mg3l 3 mgdl 3 mgd44_3 mg54_3 pcg00_0 pcg3l 3 pegdl 3 pcgdd 3 peg54_3
Case Case

(a) Solver Time (b) Solver MFLOP/s

Flgure 12 solver Optimization Comparison : f3, r = 3, Uniform
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Ell2 Results

What follows are selected charts and graphs
Illustrating different aspects of Ell2 code performance.

A priori error reduction in the energy norm under
uniform refinement.

Adaptive error reduction in the energy norm.

Effectivity indices for the residual estimator
described above.

Adaptive meshes.

or
U Adaptive DG-FEM Methods, June 9, 2006 — p.49/76



ur

EllI2 Error Energy Norm

le-07 le-05 1e-03 le-01

1le-09

3|l e[l_{1.h}
Arnold Formulation

[e]

\\\\\\\‘\o

Al T
\“\\ \
— Al \O
+ . T
A T
. T
X T+ TA L
X . +. AL
o
A
X
+

—— d1l

-A- d2

+- d3

- -xX- d4 -X
X
T T T T T
le+02 1le+03 le+04 le+05 1e+06

DOF

Figure 13: uniform Energy Norm: f3, r = 3, Arnold
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EllI2 Err. Energy, contd.

le-07 1le-05 1e-03 1le-01

1e-09

f3 1l e]l_{1,h}
Baker Formulation
O‘\\\\\“\o
A \o
Tl T
A TT—o
— + \O
A TT——o
TTT—o
X + A
. AL
x AL
+ A
X . A
+.
X T+
o
X
4
—o— d1 x
-A- d2
+- d3
4 | > a4
X - %
T T T T T
le+02 1le+03 le+04 le+05 1e+06

DOF

Figure 14 Uniform Energy Norm: 3, r = 3, Baker
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EllI2 Err. Energy, contd.

0.50

0.10 0.20

0.05

0.02

0.01

f6 || e [I_{1.h}
Arnold Formulation

O
—— d1 \"ﬁ\f
4 | a2 ol
+- d3
x- da -+
Sx
T T T T T
le+02 1e+03 le+04 1le+05 1e+06
DOF

Figure 15: Uniform Energy Norm: f6, r = 3, Arnold

Adaptive DG-FEM Methods, June 9, 2006 — p.52/76



ur

EllI2 Err. Energy, contd.

0.50

0.20

0.10

0.05

0.02

0.01

f6 | e [I_{1.h}
Baker Formulation

X o
B
—— dil +
-A- d2 X SA
+- d3
-X-  d4 +
- S %
T T T T T
1le+02 1e+03 le+04 1le+05 1le+06

DOF

Figure 16: uniform Energy Norm: 6, r = 3, Baker
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Ell2 Adaptive Error Energy Norm

f3:d2 || e ||_{1,h}

0.500
1

0.050 0.100 0.200

0.005 0.010 0.020
1 1

0.001 0.002

T T T T T T T T T
100 200 500 1000 2000 5000 10000 20000 50000

dof

F|gu relv/: Adaptive Error Energy Norm: f3,r = 3
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Ell2 Adapt. Err. Energy, contd.

f4:d2 || e ||_{1,h}

o
d —
N
o
o‘ —
—
o
S S
o
N
o _| S
- N
I ANRN
—— L_A ﬁt’o
-A- LB RRYCRA
0 \
2 + R.A XN
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F|gu re 18: Adaptive Error Energy Norm: f4, r = 3
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Ell2 Adapt. Err. Energy,

0.050 0.100 0.200

0.005 0.010 0.020

0.001  0.002

f6:d2 || e ||_{1,h}

contd.
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F|gu re 19: Adaptive Error Energy Norm: f6, r = 3
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Effectivity Indices
Effectivity indices give insight as to how well the
estimator tracks the actual error.

The following effectivity indice graphs chart the
effectivity index defined for the residual estimator

1/2
N, = ( > m%) as

Ke 9,

1.h
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Ell2 Eff. Ind., contd.
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Figure 20: Effectivity Indices, r = 2, Arnold
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PLTMG Comparison

1TNN0

A comparison with PLTMG (Bank, 1998
Indicates better performance of DG-EII2
compared to PLTMG.

PLTMG: f4, 31561 linear triangular elements,
16000 dof, ||e|| = 9.99, ||e|| =~ 5.24e —2,4.1
Sec.

Ell2: 4, 5431 linear triangular elements, 16023
dof, ||Cel|| ~ 3.39, ||e|| ~ 1.8e — 2, 4.2 sec.

Adaptive DG-FEM Methods, June 9, 2006 — p.65/76



PLTMG Comp, contd.
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PLTMG Comp, contd.
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Ell4 — Results

The biharmonic problem is more difficult to solve than
second order elliptic because the stiffness matrix condition
number grows as O(h—4).

For Ell4 test problems, typical to require between 50—-150
PCG solver iterations to obtain accuracy of 10~13,
compared with 10—-20 PCG solver iterations to reach same
accuracy for EII2 test problems.

Have implemented a variable V-cycle version of multilevel
solver, increasing the number of smoother iterations the
coarser the mesh, similar to that employed by
Gopalakrishnan and Kanschat (2003).
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Ell4 — Test Problem 2

Test Problem - f2 Domain Q: Figure28

(N2u = 288X2y2 — 48y + 8+ T2x2 + 24y* — 288x2y
X +72y% — 288xy? + 288xy — 48y° — 48x+24x* —48x3  inQ
(Uu=0hu=0 onl

Exact solution: u = x2y? (1—x)% (1 —y)?.

A X2
r (1,1)
1 e ®
B Q I
X1
@ >
0 r 1

Figure 28 square Domain
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Ell4 — f2 Exact Solution
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Figure 29 2 Exact Solution
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Ell4 — Computed Solution, {2
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Ell4 — Test Problem f4
Test Problem - 4

Domain Q: Figure/28

A?u = —16cos(2rx) m* + 64.cos(2rx) * cos(2my) — 16cos(2my)m*  inQ
Uu=2dau=20 onl

Exact solution: u= (1— cos(2mx)) (1 — cos(2my)).
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Ell4 — f4 Exact Solution

Figure 31: t4Exact Solution
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Ell4 — Computed Solution, 4
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Future Directions

Perform more extensive comparisons with other state of the
art FEM computer codes such as KASKADE, Alberta, and
deal.ll.

Improving data object and list level management in
adaptive environments.

Integration of cache blocking concepts to the full mesh
hierarchy with Multigrid.

Further optimization for L1 cache.
Tuning of variable 8 algorithms for marking.
Include coarsening for elliptic problems.

Move to time dependent problems, including parabolic and
Cahn-Hilliard.
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Future Directions

Incor
Deve

Deve

norate nonlinear solvers to handle nonlinear PDEs.

op new sharp a posteriori estimates.

op a “drastic cutting” strategy to reduce number of

adaptive iterations and quickly “zoom” in to the solution.

Implement h—p a posteriori error estimators, i.e., make a
determination to refine/coarsen in space or finite element
polynomial degree, or both.

Identify and implement new optimization technigues for
Multigrid, including preconditioners.

Investigate the use of space-filling curves to obtain optimal
ordering for the various algorithms.

Extend 2D results to 3D results.
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