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Abstract

A unified mathematical and computational framework for implementation of an adaptive discontin-
uous Galerkin (DG) finite element method (FEM) is developed using the symmetric interior penalty
formulation to obtain numerical approximations to solutions of second and fourth order elliptic par-
tial differential equations. The DG-FEM formulation implemented allows for h-adaptivity and has
the capability to work with linear, quadratic, cubic, and quartic polynomials on triangular elements
in two dimensions. Two different formulations of DG are implemented based on how fluxes are
represented on interior edges and comparisons are made. Explicit representations of two a posteri-
ori error estimators, a residual based type and a “local” based type, are extended to include both
Dirichlet and Neumann type boundary conditions on bounded domains. New list-based approaches
to data management in an adaptive computational environment are introduced in an effort to utilize
computational resources in an efficient and flexible manner.
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Chapter 1

Introduction

Mathematical modeling using partial differential equations (PDEs) is an important focus of the
scientific community, from the very small scale of atomic and molecular phenomena to the very
large scale of supernovae explosions. Continuous advances of high end computing systems implies
that a continuous demand for updates in the algorithms, software, and tools that will effectively
use those new systems must also be developed. There are two fundamental problems related to
numerical approximation of PDEs, determining the accuracy and reliability of the methods involved
and utilizing the computational resources efficiently and effectively. Adaptive numerical methods
attempt to tailor the amount of work involved to obtain approximations to the problem being solved,
say, having a finer mesh where the solution varies rapidly and coarser mesh where the solution does
not vary as much. Adaptive methods are by their nature complex to implement, yet they have the
potential to reduce drastically the size of the problems being solved. In addition, adaptive methods
are notorious for their computational overhead which often becomes comparable to the possible gains
from the approach.

This dissertation addresses implementation of adaptive methods for a specific variant of the the
Finite Element Method (FEM)! called the Discontinuous Galerkin Method (DG). Briefly, the DG
method differs from the standard Galerkin FEM in that continuity constraints are not imposed on
quantities on the interelement boundaries, thus resulting in a solution which is composed of totally
piecewise discontinuous functions.

This dissertation contains a mix of mathematical theory and computer science implementation
detail, all directed toward obtaining efficient adaptive approximations to “representative” second
and fourth order elliptic PDEs utilizing the DG FEM method.

1.1 Background

Adaptive methods for PDEs refer to methods where the approximate solution of the PDE is ob-
tained with a prescribed accuracy in an automatic adaptive process of modifying the computational
mesh to the local behavior of the solution. The mesh adaptation process is driven by a posteriori
errors estimated for regions of the domain. For an excellent overall treatment of a posteriori error
estimation, the reader is referred to Verfiirth (1995); Babugka and Strouboulis (2001).

I For more information on the standard FEM, the reader is referred to the excellent treatises Ciarlet (1978), Johnson
(1992), and Brenner and Scott (2004) among others.



Most would agree that a posteriori error estimation for elliptic problems and subsequently for
other PDEs begins with the pioneering paper of Babugka and Rheinboldt (1978) and continues
with studies dedicated to what can be classified as a Residual Based method (Verfiirth, 1998). In
this approach local residuals are calculated and then the a posteriori error estimator is obtained by
solving local Dirichlet or Neumann problems, taking the residuals as data (Babugka and Rheinboldst,
1978; Bank and Smith, 1993). Another approach of the method uses Galerkin orthogonality, a priori
interpolation estimates, and global stability in order to get error estimators in global L?- and H'-
norms (Eriksson and Johnson, 1998).

Solving finite element problems in an enriched function space (by hierarchical bases) produces
the so called Hierarchical Based error estimators (Bank and Smith, 1993). There also exist error
estimators that attempt to control the error or its gradient in the maximum norm. Such estimators
are based on optimal a priori estimates for the error in the maximum norm (Eriksson and Johnson,
1998).

The Discontinuous Galerkin (DG) can be traced back to the paper of Reed and Hill (1973). Tt
is important to note that it is not a single method but rather a methodology which has at its core
that it uses approximating functions that have no continuity constraints imposed on interelement
boundaries.

In recent years there has been increased interest in the DG method, much of it with regard to
convection dominated flows (Cockburn, 1997; Cockburn and Shu, 1998). The absence of continuity
constraints on the interelement boundaries implies that one has a great deal of flexibility to the
method, at the cost of increasing the number of degrees of freedom. This flexibility is the source of
many but not all of the advantages of the DG method over the Continuous Galerkin (CG) method
that uses spaces of continuous piecewise polynomial functions and other “less standard” methods
such as nonconforming methods. One great advantage lies in the fact that one is able to easily refine
or coarsen the mesh locally or to vary the degree of the piecewise polynomials across the mesh.

The version of the DG method that we have pursued is a weak formulation that includes penalty
terms on the jumps of the functions over the interelement boundaries. For this reason, it is referred to
as an “interior penalty” method, the one we use here in this research is often termed the “symmetric
interior penalty” or SIPG method. This approach can be traced back to the paper of Nitsche (1971).
Since then the SIPG has been a major area of interest for a number of researchers including Douglas
Jr. and Dupont (1976), Baker (1977), Wheeler (1978), Arnold (1982) and Baker et al. (1990);
Karakashian and Jureidini (1998). There are other variants of the DG method including the cell-
discretization method of Greenstadt (1982), and recently, a skew symmetric formulation in which the
penalty terms are removed (Baumann, 1997; Baumann and Oden, 1999; Riviere et al., 1999) Unlike
the SIPG, these variants do not lead to symmetric matrices upon discretization; having symmetric
systems to solve implies that standard linear solvers such as conjugate gradient type methods can be
utilized. For a nice survey of DG methods see Cockburn et al. (2000); Arnold et al. (2002); Cockburn
and Shu, editors (2005). There exists even another variant for second-order elliptic problems which is
known as the Local Discontinuous Galerkin (LDG) method, (Arnold et al., 2002), which is basically
a mixed-DG formulation and it yields a non-symmetric stiffness matrix. It is interesting to note
that throughout all of these variants of DG methods, there are some similarities. For example, LDG
method also contains “jump” terms which can be viewed as penalty terms.



1.2 Contributions

First of all, this research extends the results of the two papers, Karakashian and Pascal (2003)
and Karakashian and Pascal (2004) in a number of areas. Both of these papers dealt with SIPG
formulation for second order elliptic partial differential equations (PDEs), we extend the formulations
to include fourth order elliptic PDEs, primarily the biharmonic problem. Karakashian and Pascal
(2003) introduced the concept of solving a “local problem” which can be applied as a correction to the
solution and thus also can be used as an a posteriori error estimator. The formulation presented there
used homogeneous Dirichlet boundary conditions. We extend the concepts presented there to obtain
explicit expressions for problems with non-homogeneous Dirichlet and Neumann boundary conditions
on different parts of the domain boundary. In both papers, mention is made that the Arnold and
the Baker formulations for representation of fluxes on interior edges are basically equivalent. We
illustrate and compare the numerical differences between these methods.

For the fourth order elliptic PDE, we introduce a heuristic residual-based type error estimator
and obtain an explicit formulation of a local problem based error estimator.

Our ideas put forth on how to organize and manage data and calculations in an adaptive scientific
computing environment provide a good foundation which can be built and improved upon. We
integrate state of the art computer software with our algorithms to produce efficient code. We
also identify areas where improvements can be made and implement various “proof of concept”
techniques to also build upon obtaining better performance.

Finally, last but certainly not least, is the actual program development. The computer imple-
mentations for this research consists of around 28,000 lines of C code; 13,000 for the second order
elliptic E112 implementation and 15,000 for the fourth order elliptic E114 implementation. In ac-
tuality though, only approximately 18,000 lines of “unique” C code was developed, since modular
design principles allowed for extensive code reuse between E112 and E114. This coding effort will
provide a solid foundation on which one can explore the DG method applied to two important PDEs.
This source code will be available in electronic form in some manner in the near future, and is not
included in the text of this dissertation. Please feel free to contact the author to inquire about
source code availability.

1.3 Thesis Organization

This dissertation is divided into three main parts. The first part, Chapter 2, describes computer
science and computational aspects involved in the programming implementation of our DG-FEM
implementation. It contains information on wide variety of subjects, from data organization and
layout to quadrature to marking strategies to linear solver implementations such as Multigrid and
preconditioned conjugate gradient. Finally, various optimization techniques that were employed are
identified and explained.

The second part, Chapter 3, describes the mathematics of the DG formulation for second order
elliptic PDEs. Included in this chapter is a review of the two a posteriori estimators utilized. Note
that Appendix A contains a detailed description of stiffness matrix assembly for the model problem.
This chapter also contains a numerical comparison between the Arnold and the Baker formulations,
including representative meshes for a variety of interesting test problems. Finally, a brief numerical
investigation as to how sensitive the results are to the choice of the penalty parameter  is provided.
Appendix B provides a listing of the test problems used in the investigations.

The third part, Chapter 4, describes the mathematics of the DG formulation for fourth order
elliptic PDEs, specifically the biharmonic problem. This chapter basically reproduces the structure



of Chapter 3, however a penalty parameter sensitivity study is not included. Appendix C provides
more detail on stiffness matrix assembly, and Appendix D identifies the test problems used during
the investigations.

I close by summarizing some of the more interesting results and attempt to identify future areas
of research which could prove even more fruitful.



Chapter 2

Computational Aspects

This chapter provides the basic information required to describe the implementation of the compu-
tational models described in later chapters. In some respects, this chapter is a repository of topics
which do not fit cleanly into other chapters, but which are referenced throughout the rest of this
thesis.

2.1 Program Organization

For the most part, all programs written in support of this thesis are written in the C programming
language'. One of the goals of the research associated with this thesis was to develop methods
and techniques which allow the programs to run as fast as possible on a wide variety of hardware
and software platforms. From a flexibility standpoint, C is definitely the language of choice here
from the ease of dynamically allocating memory to the efficient use of pointers. From a portability
standpoint, C also has an advantage (note that all commercial Linux workstations come with the
gcc compiler system). Finally, linking software with other packages already in existence to perform
specific tasks (see §2.11) is usually more easily done with programs written in C than from programs
written in FORTRAN or C++. While there are exceptions to these reasons, the author has decided
to avoid the overhead and sometimes obtuse nature of coding in C++ and to avoid the complexity
of maintaining many specialty array indices associated with coding in FORTRAN. Thus, C is the
programming language of choice.

2.1.1 Design Philosophy.

Design and implementation of the Finite Element Method (FEM) into computer programs involves
many different data types and algorithms which must all work together. This necessitates a well
thought out plan on the bookkeeping aspects in contrast to the computational aspects of the code.
The reader is encouraged to keep in mind the following design goals which have driven the actual
writing the FEM code:

e Modular program design,
e Separation of geometric mesh data from PDE data, and,
e Optimize for performance.

IThe definitive reference for C programming is Kernighan and Ritchie (1978).



The modular design allows for reusing portions of code for further experiments. For example,
approximately seventy five percent of the program developed for second order elliptic PDEs was
reused without change in the biharmonic PDE implementation, specifically the mesh refinement code
and linear solver code. The separation of the geometric mesh data from the PDE data allowed this
to occur rather easily. Optimizing for performance occurred throughout the development process,
and specific areas in which this design goal was addressed will be noted throughout the text.

2.1.2 Components

It is useful at this point to describe the main program components used in the implementation of
the DG FEM. E112 is the code which works with second order elliptic PDEs (see §3). E114 is the
code which works with the biharmonic PDE. Both implementation follow the same main algorithm,
which is illustrated in Algorithm 1. Table 2.1 identifies the main routines and their purpose. These
routines will be referred to on occasion throughout the rest of this document. Note that Algorithm 1
describes an adaptive scheme which will continue until either the mesh has reached a specified input
level Ly ax, a specified input maximum number of adaptive iterations alteryax, or there are no
triangles marked for refinement (i.e., the specified input adaptive tolerance ht, has been achieved.)

2.2 Mesh Representation

Let Q C R2. Suppose we are given a quasiuniform triangular mesh which covers 2. This mesh is
a simplicial complez ? composed of triangles, edges (internal and boundary), and vertices. Suppose
this mesh consists of four interrelated sets:

N= {vi}?:vl, v a vertez.

1. T= {Ki}?:Tl, K a triangle.

2. Bl = {e! ?:Il, el an interior edge.
3. BEP = {eF ?:Bl, eP a boundary edge.
4.

where n7,n’,nB,n"Y corresponds to the number of triangles, interior edges, boundary edges, and

vertices in each set, respectively. It is important to realize that first, elements of each of these sets
are ordered within each set. Second, there exists well defined relations between these sets. For
example, each edge e is defined by two vertices {v1,v2}, i.e., its endpoints. Each triangle consists
of three edges {e1, €2, e3} (and thus three vertices {v1,v2,v3}.) There are other relations which one
can put to good use, these will be discussed in more detail later. Third, one often will talk about
a triangular mesh 7 C T, which is simply a collection of triangles. Because of the above relations
(and others), there should be no confusion when talking about T or (T,E!, EZ N), i.e., they are
equivalent and can (and will) be used interchangeably throughout this document, being specific

2 |apai ... an| is called an n-simplex with vertices ag, a1, . ..an where
lagai ...an| ={Aoao + A1a1 + -+ Anan|Xo + A1 + -+ A =1, A, > 0}

One can attach to Agao + A1a1 + -+ + Anan the barycentric coordinates (Ao, A1,...,An). If lagar ...an| is an n-
simplex, every subset {ai,,a;,,-..,a;,} is independent. A g-simplex |a;ya;, ...a;,| is called a g-face of |agai ... an|.
In R", a O-simplex |ag| is a point, a 1-simplex |aga1] is a line segment, and a 2-simplex |agaiaz| is a triangle. A set
R of simplexes in a Euclidean space R" is called a simplicial complexz in R™ if R satisfies three conditions: (i) Every
face of a simplex belonging to R is also an element of R. (ii) The intersection of two simplexes belonging to R is
either empty or a face of each of them. (iii) Each point of a simplex belonging to R has a neighborhood in R™ that
intersects only a finite number of simplexes belonging to R.



Algorithm 1 Adaptive FEM

Read_Inp()
Templs()
Initds()

while L < L.« and alter < alterpy.x do

Stiff ()

Rhs ()

Solver ()

Apost (-)

if L < L. then
Mark_Tri()

if Elements marked for refinement then

Process_Refine List ()

Refine Tri List()

else
break NRT =0
end if
else
break L = L.«
end if
alter ++
end while
Table 2.1: Main FEM Implementation Routines
Routine Description
Read_Inp() This routine reads the input which controls the run.
Templs() This routine sets up quadrature and penalty templates, as
well as projection and embedding operators for multilevel
solvers.
Initds() This routine initializes most dynamic memory required for
the run.
Stiff () This routine assembles the stiffness matrix components.
Rhs () This routine assembles the right hand side of the linear
system
Solver () This routine implements the solver chosen.
Apost (+) This routine calculates a posteriori error estimators
Mark Tri() This routine determines which elements should be marked
for refinement based on the a posteriori estimators.
Process Refine List() | This routine preprocesses the elements marked for refine-
ment and ensures that the mesh does not violate the two
neighbor condition.
Refine Tri List() This routine refines the elements marked for refinement
and produces the new mesh.
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Figure 2.1: Representative Tree T of depth 2

when necessary. Finally, one should always keep in mind that the complete collection of triangles is
T, even though various subsets 7 of T are used in the calculation process at any one time.

In practice, one requires more than simple ordered sets to support the various algorithms uti-
lized in performing a posteriori estimation driven Adaptive Mesh Refinement (AMR). Because any
AMR process produces a sequence of collections {T, T1, Ts, ...}, one requires more information to
describe the state of a mesh. We have identified the following objectives as being fundamental to
our implementation of AMR:

1. Identifying relations (including hierarchy) between elements of T (if one exists),
2. Identifying criteria used in partitioning strategies applied to T, and
3. Identifying elements of T which are active versus those that are inactive.

It is important to realize that this last task is actually part of the second task, however it is so
important that it needs to be explicitly mentioned and discussed.

2.2.1 The Tree T

Let us start off by assuming that we are provided with an initial mesh 7o or (7o, &L, EF, No). Let
each element (triangle) of 7y become the root node of its own graph. We call this collection T.
Note that there is no need to index T as Ty since we consider the whole collection of elements as a
dynamic data structure which grows and shrinks during the AMR process.

Triangles are refined by regular subdivision, i.e., four children triangles are created by connecting
the midpoints of the three edges of the parent triangle resulting in all children triangles being similar
to the parent triangle. The mesh is thus represented by a 4-ary initial mesh rooted tree T which
changes dynamically as coarsening and refinement operations are performed in the AMR process.
It is important to note that T represents only the parent-child relation between elements of T. It
does not define explicitly the interrelationships between elements via shared edges, i.e., neighbors.
Note also that the tree T is equivalent to T because there is a 1-1 correspondence between elements
of T and the nodes of the tree (graph) T. A representative tree is shown in Figure 2.1.

Associated with each triangle in T is the concept of level. A triangle’s level is simply the depth 3
of that triangle relative to its ancestor at level 0. This is illustrated in Figure 2.1 by the fact that
all triangles of the same level are shown on the same horizontal slice of the tree. The level concept
is fundamental to object storage and implementing efficient algorithms for AMR. Another way of
looking at the level corresponding with a triangle is that there exists a function LEVEL which
associates with a triangle an integer level value. The LEVEL function will prove to be useful in
future discussions, and so we formally define it here:

3A tree node of depth ¢ implies that there exists a direct path consisting of ¢ tree edges connecting the tree node
to its ancestor at the root (level = 0) of the tree.



Definition 2.2.1. The triangle tree T consists of a single (NULL) root node, which has as immediate
descendants the initial mesh 7y. Each of these descendants is the root of a 4-ary tree. The leaves of
this tree satisfy the following:

LEAF(T) =T

where LEAF is a function which extracts the leaves (nodes with no descendants) from a tree. In
addition, one can define a function LEVEL which determines a triangle’s depth in the tree relative
to the root node. Thus, LEVEL(K) = 0,VK € 7. Note also that since the root node of the tree is
NULL, it has no depth and can be effectively considered to be at the same depth as 7y, i.e., level
calculations are from the level corresponding to 7.

Another useful definition is that of the height of a mesh tree:
Definition 2.2.2. For any triangle tree T, the height of T, HEIGHT(T), is defined as

HEIGHT(T) = max LEVEL(K).
KeT

One can then naturally partition the tree T into a collection of level based meshes or Composite
Level Mesh (CLM) by

T, ={K € TILEVEL(K) < s}, s=0,1,...,HEIGHT(T)
and
7, = LEAF(T;), s=0,1,...,HEIGHT(T).

It follows that one can refer to a tree T of depth L where

L= max LEVEL(K) = HEIGHT(T).

It is important to note that corresponding to the sequence 7o, 71, ..., 7; there is also a sequence
of trees To, T1,...,T;. Adopting the convention that the tree will only grow from the initial mesh
implies To € Ty € --- € T;, and thus we only have to worry about the current tree T with the
current mesh represented as LEAF(T;) = 7;.

2.2.2 Level Based Partitioning
The LEVEL function defined above leads one to define a level based partition of tree T whereby

T = {Té}z%:o

where Ty := {K € T|LEVEL(K) = ¢}. In other words T} is just the set of triangles which are all
of the same level. Since we are starting with a quasiuniform mesh under regular refinement, all
triangles of the same level are approximately the same size.

Each set of triangles T; can further be partitioned into what we will call Leaf and NonLeaf *
triangles. A Leaf triangle K € T is one that does not have any children, while a NonLeaf triangle
K €T is a triangle which has been refined and thus does have children. Formally:

T}/ := {K € TILEVEL(K) = ¢ and K — children = NULL}
7" .= {K € T|LEVEL(K) = ¢ and K — children # NULL}

4Other researchers use the terminology Active for Leaf and NonActive for NonLeaf.



It thus makes sense to partition each set of triangles Ty as

T, =THoTN", (=01,...,L

2.2.3 Mesh Hierarchy {7,}},

So far we have just been describing different collections of triangles partitioned by level and Leaf
and NonLeaf criteria. What is most important however is the concept of a level based mesh 7.
Every tree T induces a collection of level based meshes {7}/ as follows:

-1 4
L=Pr’en=Pr’ e (2.1)
k=0 k=0

Another way of viewing the level based mesh collections is to take a horizontal cut across the tree
T at a level ¢, dropping any triangles of level k£ > ¢ which may exist in the tree T. This process
could be termed pruning the tree T at level £. Figure 2.2 illustrates a representative mesh hierarchy
corresponding to the tree T illustrated in Figure 2.1.

A couple of comments need to be made regarding {7;}. First, the full Leaf 7, is what is used in
Conjugate Gradient and Gauss-Seidel linear solvers, i.e., there are no multilevel meshes required. It
is only through Multigrid that the full set of level based meshes are utilized. Second, for any tree T
of depth L, the following relationships exist:

To=Ty o1, =Ty

L—-1
TiVLf:Q):}TI:TL:@TéLj@TL

£=0
L—-1 L
-prlor -1
£=0 £=0

Table 2.2 enumerates the different sets discussed so far for the representative tree T shown in
Figures 2.1 and 2.2. In addition, it should be noted that similar relations exist for interior edges,
boundary edges, and vertices contained in the simplicial complex. Finally, the collection {Tz}ngo
provide the iterator lists used throughout computer implementation of the various algorithms.

2.2.4 Local Ordering

Local ordering of vertices and edges is important in any FEM implementation. Figure 2.3(a) illus-
trates the vertex and edge ordering for an arbitrary triangle K. Note that vertices are numbered in
a counterclockwise fashion. Figure 2.3(a) also indicates the local ordering of edges within a triangle.
Note here that edge e; has as its endpoints vertices ¢ and /3 mod 3.

Since DG allows for hanging nodes along edges, it will often be necessary to perform numerical
quadrature along a partial or half edge. Figure 2.3(a) also indicates an ordering scheme for partial
edges. Note that the nomenclature of a partial edge e;; indicates that the partial edge is a part of
edge e; in the original triangle K.

Figure 2.3(b) indicates the ordering of the children of K when K undergoes regular refinement
to produce {Ky, K1, K2, K3}. This ordering has some advantages which will be explained in more
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Figure 2.2: Mesh hierarchy 7 associated with T of depth 2

Table 2.2: Enumeration of element collections associated with T of depth 2

Collection Representation Contents
KTree IT|=|T| T and T contain the same number of triangles
Level Based Lists T = {T,};_,

To = {K(0,0), K(0,1)}
(

Level Based Leaf Lists TH = {T}7}7, 107 = {K(0,1)}
TlLf = {K(L 1)7 K(L 2)}
T = {K(2,0),K(2,1), K(2,2), K(2,3),
K(274)7 (27 )7 (27 6)7 (277)}
Level Based NonLeaf Lists | TV* = {TV*}2_, | T,7" = {K(0,0)}
T = {K(1,0), K(1,3)}
Y =0
Level Based Meshes {Te}izo To = {K(0,0), K(0,1)}
T, ={K(0,1), K(1,0),K(1,1),K(1,2), K(1,3)}
T, ={K(0,1),K(1,1),K(1,2), K(2,0), K(2,1),
K(2,2), K(2,3), K(2,4), K(2,5), K(2,6), K(2,7)}

11




(a) K (b) {K(),Kl,Kz,Kg}

Figure 2.3: Local Ordering for Triangle K { Ky, K1, K2, K3}

detail in §2.3. Suffice it to say that propagation of the outward normals of K to {Ky, K1, Ko, K3}
does not require any additional computation other than a possible change of sign. This means that
once the outward normals are computed on the initial mesh 7y, no further normal calculation is
required.

2.3 Data Objects

Data objects are the fundamental building blocks of any computer program. The C programming
language allows for one to group together data of various types into what is called a data structure
or em struct. The individual data types of which the struct is composed are often called fields
of the struct, borrowing from standard database terminology. For our FEM implementation, we
have developed structs types which provides the basic information required to define the mesh 7j,
upon which any FEM is based. In addition, we have separated the data objects into two categories;
geometric mesh data and PDE data. This separation provides advantages in reuseability, portability,
and is especially suited for DG FEM implementations.

Regarding geometric mesh data objects, it is important to try and keep to a minimum the size
(in bytes) of the data object. The main reason is to conserve on storage, because typically FEM
implementations require a large number of data objects.

2.3.1 NODE_t Data Objects

NODE_t geometric data objects simply describe the coordinates of the vertices of the triangulation.
In addition, we maintain an integer describing the level of the vertex. It should be noted that vertices
once introduced into the mesh on level ¢ are also present in all future composite level meshes of higher
levels, i.e., for levels £/ > £. Thus, the meaning of the 1v1 field in the NODE_t struct data type is to
indicate the first level in which the vertex was introduced. The C code for the NODE_t struct data
type is shown in Figure 2.4. Each instance of the NODE_t data type occupies 24 bytes.

12



/* Node data structure */
typedef struct nodestruct {

double x; // x coordinate
double y; // y coordinate
unsigned int 1vl; // Level index Node
}
NODE_t;

Figure 2.4: NODE_t Structure

2.3.2 EDGE_t Data Objects

There are two types of EDGE_t geometric data objects, interior edges (IE) and boundary edges
(BE). The C code for the EDGE_t struct data type is shown in Figure 2.5. Each instance of the
EDGE_t data type occupies 32 bytes. Note that extensive use is made of pointers to other data
objects of various types.

Internal Edges

An internal edge can be considered to be the boundary separating all or part of an element from
another element. Thus, for each edge present in the mesh, the EDGE_t data struct maintains
pointers to TRIANGLE _t data structs, K™ and K. In addition, the position of the edge in both
K* and K~ is maintained according to the convention described in Figure 2.3(a) in fields Kploc
and Kmloc, respectively. Note that these fields are compressed into unsigned bit fields, thus saving
on storage. The presence of the midpt field (not NULL) allows for a quick check to see if an edge
has been refined.

The data0 field provides a pointer to each edge’s ancestor in the initial mesh, the data struct
corresponding to this object is described in Figure 2.6. This field, coupled with the normlsgn field
and the 1v1 field allows for quick computation of the actual length and normal for this edge. Note
that since each edge when refined is split into two edges of equal length, the actual length of an
edge on level £ is 1/2° times the length of its original ancestor edge in the initial mesh. Figure 2.7
illustrates the relationships between normals of the edges of the parent element K and its children
{Ky, K1, K2, K5}. Note that the ordering implemented here implies that the outward normals will
only change sign for the middle triangle K3 when refined.

Boundary Edges

Boundary edges utilize the same struct as interior edges. However, since the edge exists on the
boundary, there is no K~ and it is set to NULL. While not all of the fields are used here resulting in
under utilized memory, the ratio of boundary edges to interior edges is small for large meshes and
thus can be considered to be negligible.

13



/* Edge data structure */

typedef struct edgestruct {
struct edggeomdata *dataO;
struct tristruct *Kplus;
struct tristruct *Kminus;
NODE_t *endpl[2];
NODE_t *midpt;
unsigned Kploc : 4;
unsigned Kmloc : 4;
unsigned type : 2;
unsigned Leaf : 1;
unsigned : 5;
int8_t mark;
int8_t normlsgn;
uint8_t 1vl;

}

EDGE_t;

//
//

//
//
/7

//
/7
//
//

//

Struct containing edgelen, norml for init mesh
K+

K_

Endpoints of edge

Midpoint NODE (NULL if Leaf EDGE)

Location in K+ (0-8)

Location in K- (0-8)

Edge Type : O - Interior, 1 - Diri, 2 - Neumann
Leaf Flag
pad to int8 width

Refine action flag: -1 Coarsen, 1 Ref, O No act
Sign (+/-) multiplier for norml for init mesh
Level index

Figure 2.5: EDGE_t Structure

typedef struct edggeomdata {
double edgelen;
double norml[2];
NODE_t *endpts[2];

}

EDGDATAG_t;

Figure 2.6: EDGEDATAG_t Structure

(b) {Ko, K1, K2, K3}

Figure 2.7: Outward Normal Propagation
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/* Triangle data structure */

typedef struct tristruct {
int blk; // blk/tile indicator
struct trigeomdata *dataO; // Struct containing area, atrf for init mesh
GNode *treeloc; // pointer to triangle location in KTree
uint8_t 1lvl; // Level index TRIANGLE
unsigned Leaf : 1; // Leaf Flag
unsigned recalc : 1; // sd recalc flag
unsigned nbrstate : 1; // nbrstate flag
unsigned cbdy : 1; // cache bndry flag
unsigned sblk : 4; // cache subblock
int8_t mark; // Refine action flag: -1 Coars, 1 Ref, 0 No act
int8_t atrfsgn; // Sign (+/-) multiplier for atrf for init mesh
EDGE_t *edges[3]; // pointers to edges: 0-2
NODE_t *corners[3]; // pointers to corners: 0-2

}

TRIANGLE_t;

Figure 2.8: TRIANGLE_t Structure

2.3.3 TRIANGLE_t Data Objects

The data structure for TRIANGLE_t objects is illustrated in Figure 2.8. Each instance of a TRI-
ANGLE_t data object occupies 40 bytes of storage. The dataO field provides a pointer to each
triangle’s ancestor in the initial mesh, the data struct corresponding to this object is described in
Figure 2.9. Similar to the manner in which quantities such as edge length and outward normals
were scaled from the ancestral edge in the initial mesh, triangle quantities such as the area and
affine transformation coefficients can also be scaled. Specifically, the area of a triangle on level £ is
1/4% times the area of the original ancestral triangle on the initial mesh. The scaling of the affine
transformation coefficients will be described in section §2.7 and make use of the atrfsgn field.

There are fields which have particular usage in our implementation. The field treeloc is a
pointer to a GNode object in the mesh hierarchy 4-ary tree KTree. GNode objects are part of the
glib package (see §2.11.1). This allows the hierarchy relations to be stored separate from the recalc
field which allows for selective recalculation of element stiffness matrix components depending on
if mesh changes require it to be done. The nbrstate field indicates which instance of the element
stiffness matrix diagonal block is active and is used primarily with the multilevel solvers (see §2.9).
The blk, cbdy, and sblk fields are used when the mesh is partitioned for optimized usage of cache
(see §2.10).

2.3.4 PDE Data

PDE data consists primarily of one or more vectors associated with each element K € T. There
are three types of data objects relating to PDE data. The first data object is the diagonal block
symmetric positive stiffness matrix associated with each element. Only the lower triangular portion
plus the diagonal is stored. The diagonal block describes the interactions of an elements degrees of
freedom (dof). The second data object is the off-diagonal block associated with each interior edge.
The off-diagonal is an n X n matrix where n is the number of dof for the elements and describes
interactions between dof of K+ and dof of K~. See §3.1.4, §4.1.3 for more information on stiffness
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typedef struct trigeomdata {
double area;
double atrf[2][2];

}

TRIDATAG_t;

Figure 2.9: TRIDATAG_t Structure

matrix blocks and stiffness matrix assembly.

The third type of data object is simply one or more vectors of length n (dof) associated with
each element. Of primary importance is maintaining the solution obtained during the solve process
and element right hand side (rhs) vectors. More detailed information on the organization and use
of these vectors is contained in §2.4, §2.5, and §2.9.

2.3.5 Object Relations

The interrelationship of the basic data objects is illustrated in Figure 2.10. The offset label on
pointers into the PDE data vectors is described more fully in §2.5, however it should be pointed out
that there is a one-to-one correspondence between objects and their associated PDE data vectors
defined by these relations.

2.4 Memory Management

2.4.1 Background

During the early development stages of E112 it became clear that a comprehensive and flexible
memory management strategy was required. Initial efforts utilized a complete dynamically allocated
memory strategy, i.e., when memory was required, it was requested through standard C function
calls such as malloc and calloc. ® There were problems though with adaptive code performance
due to the unpredictability as to when and where the program would make system calls requesting
memory. In addition, memory came back in blocks which were not contiguous and were difficult to
manage and the code was susceptible to bugs which were hard to track down.

The logical next step was to allocate large blocks or chunks of memory for specific purposes at the
beginning of the program. Being an old FORTRAN programmer, I was familiar with these techniques
and this was not difficult to implement. Seeing as most computer programs are run in an iterative
fashion until one is prepared to go into a production run phase, it did not seem to be an unreasonable
burden to require as input limits on the total number of data objects that one would require, i.e.,
total number of vertices, internal and boundary edges, and triangles. Note that one of the added
benefits is that the memory allocated is contiguous in virtual memory space, the operating system
kernel determines whether physical contiguity is maintained.

The final step was to determine how to manage the memory which was allocated. With memory
being allocated for a wide variety of purposes from data objects to linked lists and tree structures to
temporary calculational storage, not all of which would be used at any one particular time, it made
sense to separate the different memory requirements into different categories. The solution to this

5For detailed information on memory allocation on UNIX systems, the reader is referred to Stevens (1993).
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problem was the Vmalloc package developed by Kiem-Phong Vo from AT&T laboratories. Quoting
Vo (1996):

Vmalloc generalizes malloc to give programmers more control over memory allocation.
Vmalloc introduces the idea of organizing memory into separate regions, each with a
discipline to get raw memory and a method to manage allocation.

Note that for the purposes of this research, Vmalloc memory allocation is used primarily for or-
ganizing the required memory into separate regions. The extra options contained in the Vmalloc
library to control memory access disciplines and methods to tailor memory allocation for specific
data types and usage were not explored to any great degree. The interested reader is referred to Vo
(1996) and http://public.research.att.com/index.cfm?portal=19 for more information and
download availability.

Essentially there are six areas of memory allocation utilized in our FEM implementation:

Global Variables - Static
Local Variables - Static
Template Storage - Dynamic
Object Storage - Dynamic
List Storage - Dynamic
Vector Storage - Dynamic

NS o e

Managing and improving the allocation and management of the last three memory areas is where
the most performance improvements can be gained.

There are three main types of dynamic memory allocation which are utilized in the programs
developed in this research. The first type is explicitly allocated by the program using Vmalloc and
assigned to particular regions, described in §2.4.2. The second type of memory is implicitly allocated
and managed by the glib (§2.11.1) package and is used for small linked-list and n-ary tree usage.
The last type is that which is allocated by included library routines, mainly the triangle (§2.11.2)
and METIS (§2.11.7) packages. Note that the last two groups of dynamic memory allocations are
also put under the Vmalloc paradigm.

On a final note, the memory allocation for any run is driven by the input parameters listed in
Table 2.3. It should be noted that while allocation is performed for a large number of data objects
at the beginning of a run, during the course of a run these data objects are grouped by the level
associated with which each object. Thus there is a need for partitioning the global storage by level.
After the initial triangulation {No, &L, EZ, Ty} is obtained by triangle (see §2.11.2), the following
level based limits govern the full refinement level limits for each type of data object:

NODE-t: |Nelmax = €71 max + [E7 1 [max;

Internal EDGE_t: |&] |max = 3|T¢—1|max + 2|EF 1 |maxs
Boundary EDGE_t: [£/[imax = 2/E2 1 lmax
TRIANGLE_t: |T¢|max = 4/77—1|max-
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Table 2.3: Memory Control Input Parameters

Input Parameter

Description

LvlDepth

Governs the maximum total depth of the Mesh Hierarchy tree T. If
this depth is reached and the adaptive input tolerance has not yet
been reached, the program will stop execution.

InitMemUnits [0]

Determines how many total NODE_t objects are allocated.

InitMemUnits[1]

Determines how many total internal EDGE_t objects are allocated.

InitMemUnits[2]

Determines how many total boundary EDGE_t objects are allocated.

InitMemUnits[3]

Determines how many total TRIANGLE_t objects are allocated.

InitLvlFull Determines how many initial levels of T will be fully refined based
on the initial mesh.

LvlMemUnits [0] Specifies a level based upper limit on NODE_t objects which are allo-
cated for levels £ > InitLv1Full.

LvlMemUnits[1] Specifies a level based upper limit on internal EDGE_t objects which
are allocated for levels ¢ > InitLv1Full.

LvlMemUnits[2] Specifies a level based upper limit on boundary EDGE_t objects which
are allocated for levels ¢ > InitLv1Full.

LvlMemUnits [3] Specifies a level based upper limit on TRIANGLE_t objects which are

allocated for levels £ > InitLv1Full.

2.4.2 Memory Regions

Table 2.4 lists the main regions of memory which are allocated by the programs used in this research.
There are other regions utilized which are not listed in the table, but they are not critical to the
main implementations of adaptive DG FEM. Partitioning of memory allocation into regions using
Vmalloc has proven to be very flexible in managing the diverse memory needs of an adaptive FEM
implementation. Included in the Vmalloc package are function calls which allow for debugging
particular regions as well as summary statistics on each region allocated.

2.4.3 Control Blocks

There is one other partitioning of the memory that has proven to be useful, grouping of certain data
according to functional usage. This grouping has two purposes, first of which is to provide a method
of allocating on a global basis key parameters, rather than them passing as arguments to individual
functions. The second purpose is to provide a management strategy of individual variables which
are not dynamically allocated but are statically declared. The goal here is to provide somewhat of
a FORTRAN Common Block functionality in a C program. Rather than calling this grouping a Common
Block, we call them control blocks.

Table 2.5 lists the major control blocks employed in this research. Figure 2.11 illustrates a portion
of the declaration of the Data Control Block or DCB. Referencing a variable present in the DCB
from a routine other than where it is declared simply requires an extern declaration of the complete
block. Note also the presence of macro #define for simplifying reference to these variables.

2.5 Data Structures

Working with large amounts of diverse data in an adaptive FEM environment requires careful plan-
ning on how the data is managed. As was already mentioned in §2.4, large chunks of memory are
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Table 2.4: Vmalloc User Defined Memory Regions

Memory Region

Description

Reg_LL

Contains the mazimum level based limits up to level LvlDepth for ver-
tices, edges, and triangles.

Reg_GDATA Contains the initial mesh geometric data for edges, and triangles, such as
area and edge lengths When this data is needed in calculations involving
data objects of level £ > 0, the appropriate items in this region are scaled
appropriately by level.

Reg_GOBJ Contains the global memory chunks for vertices, edges, and triangles.

Reg_LNKB Contains the global memory chunks for linked list objects required to
maintain level based lists for vertices, edges, and triangles.

Reg CNT Contains the level based counts for the current state of the linked lists.

Reg_VEC Contains the global memory chunks associated with vectors involved in
calculations such as solution and residual vectors.

Reg _OFF Contains the global memory chunks associated with off-diagonal matrix
blocks associated with interior edges.

Reg_SD Contains the global memory chunks associated with diagonal matrix
blocks associated with each triangle.

Reg_TMPL Contains quadrature templates and penalty term templates on the ref-
erence element K.

Reg Misc Contains miscellaneous allocations not specifically grouped in another

region. Primarily this region contains glib allocations for temporary
lists.

Table 2.5: Control Block Summary

Control Block | Description

JCB Job Control Block - variables which are applicable to the total
run

ECB Estimator Control Block - variables which are related to a pos-
teriori error estimation

MCB Mesh Control Block - variables which are related to mesh main-
tenance

SCB Solver Control Block - variables which are related to the linear
solvers

MLCB Memory/List Control Block - variables which are related to
memory and list management

DCB Data Control Block - variables which are related to PDE data

PCB PAPI Control Block - variables which are related to perfor-
mance monitoring with PAPT

TCB Triangle Control Block - variables which are related to the use
of triangle for the initial mesh

siloCB Silo Control Block - variables which are related to the use of
silo/meshtv for visualization
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struct _datactrlblk {

TRIDATAG_t *TR_GEOM_DATA;
EDGDATAG_t *EDG_GEOM_DATA;

double

double

double

double
};

*vectmem;
*vect [9];
*0FF_DATA;
*SD_DATA;

// Init Mesh area,atrf Storage

// Init Mesh edgelen, norml Storage

// ptr to vector memory chnk

// Large vectors

// 0ff diagonal edge interaction matrices
// SD Matrices (symmetric storage)

/* DCB is declared in memlst.h */
TR_GEOM_DATA DCB.TR_GEOM_DATA
EDG_GEOM_DATA DCB.EDG_GEOM_DATA

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

vectmem DCB.vectmem
DCB.
DCB.

up
bp
rp
sp
PP
qp
zp
vp

DCB

DCB

vect [0]
vect[1]

.vect [2]
DCB.
DCB.
DCB.
DCB.

vect [3]
vect [4]
vect [5]
vect [6]

.vect [7]
estp DCB.vect[8]
OFF_DATA DCB.OFF_DATA
SD_DATA DCB.SD_DATA

Figure 2.11: DCB Control Block
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allocated for each type of data object upon program startup. The problem now being faced is how to
organize these data objects into structures which will allow efficient manipulation and computation.
Of primary importance is the ability to change efficiently the grouping together of collections of data
objects and the ability to iterate through these collections.

To achieve these goals, we have incorporated two fundamental data structures, linked lists and
arrays. Linked lists commonly maintain pointers to the next element in a list, arrays utilize an
index to access a specific item in the array. Linked lists are extremely efficient when accessing
items in a sequential manner, but suffer from the drawback of having to traverse the list from the
beginning (or end) to access an item located in the middle of the list. Arrays are the standard way
of organizing and accessing data in a computer program, however when multiple dimensioned arrays
become involved then poor memory utilization and index bookkeeping make the programmers task
more difficult. In some respects however, one may consider an index to an element in an array as
a pointer to that element because the compiler will translate the index into an address offset from
the start of the array.

One commonly overused concept in C code is the use of pointers to pointers. While this provides
great flexibility (and readability) in the code to identify relations between data objects, it often can
produce poor program performance due to the jumping around in memory following the pointers.
Thus, while one could conceivably construct a set of data structures which have a minimal set of
pointers defining the relations between the data objects, our design of data structures has some
redundancy built in. For example, since a triangle object has pointers to its three vertex NODE_t
objects, and the triangle knows its three edges, there really is no need to maintain pointers for
each edge to its endpoint NODE_t objects. However, we do maintain those pointers because they are
useful in modifying the geometric mesh. The point here is that one must make a judgment as to
when maintaining a pointer is necessary. If a one-to-one relation exists between data objects, then
indexing might be adequate. If a many-to-one or one-to-many relation exists between data objects,
then the use of pointers is probably the better choice.

To tie these thoughts together a bit, the reader is referred again to Figure 2.10, which describes
the relations (address pointers) between the different data objects. Note that there are dashed lines
between some of the data objects with the word offset above them. For example, associated with a
TRIANGLE_t object has associated with it a diagonal block matrix. Looking back at the TRIANGLE t
data structure (see Figure 2.8) one should notice that there is no explicit pointer to the diagonal
block matrix. The dashed line implies that this relation is implicit and does not need to be kept
as a pointer, but rather is determined by the position of the data object relative to the start of the
large chunk of memory allocated to those data objects, i.e., its offset.

This leads to the most important rule for understanding how one can improve performance when
dealing with a set of data objects and associated sets of data objects:

Rule. All auziliary sets of data objects associated with a set of primary data objects (NODE_t, EDGE_t,
or TRIANGLE_t) maintain a one-to-one relation between elements of the primary set and elements of
the auxiliary set. Thus working with a primary data object and requiring access to its associated
auxiliary data object does not require maintenance of an address pointer and can be accessed directly
by the primary objects offset relative to the beginning of the primary set in memory.

In other words, when large chunks of memory are allocated for the primary data objects, large
chunks of memory are also allocated for the associated data objects which satisfy this rule. Table 2.6
describes the associated auxiliary data structures required for each set of primary data objects.
Figure 2.12 illustrates the relation between the set of primary NODE_t objects in NODE_BLOCK and the
auxiliary set of GList% data objects in ND_LNK_BLK.

6A GList object is part of the glib package and is shown in Figure 2.41.

22



Table 2.6: Large Memory Chunk Relations

Primary Type Aux Type Purpose
NODE_BLOCK NODE_t ND_LNK_BLK GList USED/AVAIL Doubly Linked List
Objects
IEDGE_BLOCK EDGE_t IE_LNK_BLK GList USED/AVAIL Doubly Linked List
Objects
IE_LEAF_LNK_BLK GList LEAF/NLEAF Doubly Linked List
Objects
OFF_DATA double * | Off-Diagonal Block Matrices
BEDGE_BLOCK EDGE_t BE_LNK_BLK GList USED/AVAIL Doubly Linked List
Objects
BE_LEAF _LNK_BLK GList LEAF/NLEAF Doubly Linked List
Objects
TRI_BLOCK TRIANGLE_t TR_LNK_BLK GList USED/AVAIL Doubly Linked List
Objects
TR_LEAF_LNK_BLK GList LEAF/NLEAF Doubly Linked List
Objects
SD_DATA double * | Diagonal Block Matrices
vectmem double * | Vectors
< NODE_t NODE_BLOCK *
0 2 3 4 5 6

| /=

0O]J1]2

3141516

GList ND_LNK_BLK *

Figure 2.12: NODE_BLOCK — ND_LNK _BLK Relationship
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2.5.1 List Structures

Associated with each set of Link objects listed in Table 2.6 are various sets of List pointers of
type GList *, organized by level. These level list pointers determine sets of primary data objects
associated with a particular level in the mesh hierarchy, with the initial mesh occupying level zero,
and follow the concepts described in §2.2. In addition, all lists pointers for levels greater than zero
are initialized to NULL. Table 2.7 describes the level based lists and associated pointers used in the
programs developed for this research. Note that when I refer to a list, I am really referring to a
pointer which points the start of a doubly linked list data object. As before, the input parameter
Lpax is defined to be the maximum hierarchy level that the program will run to. Note also, since
the linked list objects maintain a one-to-one correspondence with the data objects, there is no need
for maintaining a pointer to the data objects themselves 7.

The basic manner in which assignment of data objects to particular locations in memory is fairly
simple. A pool of primary data objects is initially allocated (the large memory chunk) and all marked
as AVAIL. For the initial mesh, items are pulled from the AVAIL pool and considered to be USED.
The AVAIL list is then updated to point to the next available item in the pool. This sequence
continues for all initial mesh primary data objects until complete.

Let L be the current maximum level in the mesh hierarchy. For subsequent levels, whenever the
first data object is requested for level L + 1 the upper level boundary for level L is set, and objects
for level L+ 1 are then pulled starting from the level boundary just set. One of the hard parts of this
method is estimating how many extra AVAIL objects should be allocated to level L when the start of
level L+1 is set because there is no a priori knowledge of how many objects on level L will eventually
be required. This is further discussed in §2.5.2. Figure 2.13 illustrates the basic organization of level
based lists by showing the state of the lists for triangles of a mesh hierarchy of level L, L > 0. Note
that in this figure USED and AVAIL are assumed to be contiguous on each level, this assumption
will be relaxed later in the discussion. Note also that the LEAF/NLEAF link objects corresponding
to AVAIL objects are not used, this follows from the fact that the LEAF/NLEAF list on a particular
level is a partition of the USED objects on that level.

Before we get into more of the details, it is important to note that for each physical set of link
blocks, two lists are actually present. This is because the USED/AVAIL and LEAF/NLEAF lists
are individually mutually exclusive, i.e., if an object is USED it is no longer AVAIL. Similarly, if an
object is a LEAF object, it is not a NLEAF object. This allows efficient utilization of the list link
block storage essentially multiplexing the two lists together.

2.5.2 Maintenance

Now that we have a framework with which we can store individual data objects and group collections
of data objects in an efficient manner, we are now faced with how to deal with additions and removals
from the various lists. For example, consider the case of refining a triangle by regular refinement. A
triangle can only be refined if exists on the leaf of the mesh hierarchy tree, therefore it will have to
be removed from the the LEAF list for that level and inserted into the NLEAF list for that level. In
addition, the four children triangles will have to be removed from the AVAIL list on the next level
and inserted into the USED list for the next level, as well as being inserted into the LEAF list for
the next level. Figure 2.14 illustrates a typical situation on how the link blocks are distributed on
a particular level. The gray links are USED, others are AVAIL. Note that having AVAIL blocks in
between USED blocks only occurs when coarsening is active. They are kept here in order to provide
the most general picture.

7GList link objects do allow for a pointer to be stored as data.
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Table 2.7: Level Based List Pointers, ¢,

=0,...

7Lmax

List Pointer Purpose

ND_LIST[/] Start of USED list of NODE_t data objects by level
ND_LIST_AV[/] Start of AVAIL list of NODE_t data objects by level

IE_LIST[/] Start of USED list of internal EDGE_t data objects by level

IE_LIST_AV[/]
IE_LIST_LAST[/]

Start of AVAIL list of internal EDGE_t data objects by level
Pointer to last USED internal EDGE_t data object by level

IE_LEAF [/] Start of LEAF internal EDGE_t data objects by level
IE_NLEAF [/] Start of NLEAF internal EDGE_t data objects by level
BE_LIST[/] Start of USED list of boundary EDGE_t data objects by level

BE_LIST_AV[/]
BE_LIST_LASTI[/]

Start of AVAIL list of boundary EDGE_t data objects by level
Pointer to last USED boundary EDGE_t data object by level

BE_LEAF [/] Start of LEAF boundary EDGE_t data objects by level
BE_NLEAF [/] Start of NLEAF boundary EDGE_t data objects by level
TR_LIST[/] Start of USED list of TRIANGLE_t data objects by level

TR_LIST_AV[/]
TR_LIST_LAST[/]
TR_LEAF [/]
TR_NLEAF [/]

Start of AVAIL list of TRIANGLE_t data objects by level
Pointer to last USED TRIANGLE_t data object by level
Start of LEAF TRIANGLE_t data objects by level

Start of NLEAF TRIANGLE_t data objects by level

< TRIANGLE_t TRI_BLOCK *
ven L2

L1 L-1 L

L AVAIL
USED

AVAIL USED

TR_LIST_AV[L — 1] TR_LIST_AV[L]

< GList TR_LNK_BLK *

TR_LIST[L — 1] TR_LIST[L]

TR_LEAF[L — 1] TR_LEAF[L]

< GList TR_LEAF_LNK_BLOCK x*

Figure 2.13: Triangle List State for level L mesh
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AVAIL | AVAIL USED USED AVAIL USED AVAIL

Figure 2.14: Link Blocks

Table 2.8: List Link Management Routines

Routine Purpose
Obj_Pull AVAIL Object — USED Object, adjust list and link pointers
Obj_Free USED Object — AVAIL Object, adjust list and link pointers
Swap_Pull Swaps AVAIL and USED Objects, called from 0bj_Pull
Add_to_Leaf Adds Object to LEAF list
Swap_Free Swaps USED and AVAIL Objects, called from 0bj Free
Rem_fr _Leaf Removes Object from LEAF list
Leaf_to NLeaf | Moves Object from LEAF list to NLEAF list
NLeaf_to_Leaf | Moves Object from NLEAF list to LEAF list

In order to handle the various situations of moving data objects say from AVAIL to USED or
LEAF to NLEAF, the routines in Table 2.8 were developed and implemented. Note that no actual
movement of the data objects themselves, either the primary data objects or the link objects, is
performed. All that takes place during these operations is adjustment of link and list pointers.

The maintenance of the lists of data objects, both USED/AVAIL and the LEAF /NLEAF provides
for great flexibility in the adaptive FEM environment. By taking care of the allocation upon program
initialization, needless calls to the operating system for dynamic memory is eliminated. In addition,
list maintenance is fast, because all that is updated is the list and link pointers. Finally, some sense
of data contiguity is maintained because in the pure refinement adaptive runs, all of the USED
objects are located at the beginning of the list and all of the AVAIL objects are at the end of the
list for each level. However, there may be contiguity gaps between LEAF and NLEAF objects.

2.5.3 Reordering

To obtain better data contiguity of the data objects within a list, we have implemented an ordering
option for the LEAF and NLEAF objects on each level. This operation requires two phases, the
first is mandatory and the second is optional. The first phase requires sweeping all of the NLEAF
data objects to the end of the LEAF list. This phase does require physical movement of memory
(using memcpy) to move data objects data from one area to another. However, the one-to-one
correspondence is maintained in its entirety. The second phase requires reordering within the LEAF
and NLEAF lists based on some external ordering criteria. This may be important in some cases
if some optimal ordering® is required during the solve process for performance optimization (see
§2.10.2).

Currently only LEAF triangle data objects are reordered. In order to reorder triangles, address

8Such as would be required if a space filling curve method is used.
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pointers pointing involving edges must also be updated. Specifically, when a triangle is moved, all
internal edges which are a part of the triangle’s boundary must be updated to reflect the triangle’s
new location in memory, i.e, K and K~ pointers. In addition, the diagonal block matrix associated
with the triangle requires movement, as well as solution and right hand side vectors for the triangle.
Finally, the hierarchy mesh tree must also be updated. This is accomplished via a swapping process
which basically just a single sweep through each level’s LEAF list.

One idea which has not been implemented but which might provide additional performance gains
is the reordering of internal edges and associated off-diagonal block matrices. Once an ordering
scheme is identified and developed for this, it would certainly be worth an effort to obtain better
data contiguity of the off-diagonal block matrices.

2.5.4 Tree Structure and Auxiliary Lists

Currently we rely on glib to allocate and manage the hierarchy tree using GNode data objects.
Certainly one improvement would be to perform the allocation upon program initialization, as is
done for the majority of lists. However, glib provides for allocation in a buffered manner and it
does a pretty good job. Finally, there are other miscellaneous lists used throughout the programs
developed for this research, mainly singly linked lists and some additional doubly linked lists. These
temporary lists reuse their data objects during repeated adaptive iterations, and thus it allowing
glib to handle the link allocation and management allowed me to focus on more important issues.
For more information on glib and its functionality, see §2.11.1.

2.6 Adaptive Methods

Adaptive methods in numerical approximation of partial differential equations basically follow the
same strategy, that of Solve — Estimate — Refine or SER. Between the Estimate and the Refine steps
is one that is very important, the Marking step?. The Marking step determines which elements
should be refined (or coarsened).

One approach to implementing an adaptive process is to utilize a posteriori error estimators !
to guide the selection of a subset of elements S = {K} C 7}, such that when all elements of S are
refined, the resulting error will be approximately equidistributed among all elements. This process is
repeated until some overall global tolerance is achieved. Here we present a marking strategy based
on that proposed in Dérfler (1996). The reader who is interested in other marking strategies is
referred to Babugka and Rheinboldt (1978) and Morin et al. (2000).

0

2.6.1 Marking Strategies

We present first the marking strategy described in Dorfler (1996), reproduced in Algorithm 2. Note
that this algorithm is guaranteed to stop because 7 goes to zero. Choosing v determines how fine the
procedure will work, smaller values of v allow the marking strategy to step through the range of the
estimator with finer step size. The choice of 6 determines the fraction of the global estimator that
one wants to refine. Choosing 6 close to one would produce uniform refinement, i.e., all K € 7, are
refined. Choosing 6 small would only choose a few elements to be marked each adaptive iteration,
thus resulting in many adaptive iterations (and many solves) to reach the input desired tolerance e.

90ften the Marking steps is considered to be part of the Refine step.
10See §3.2, §4.2 for a more detailed description of different types of a posteriori error estimators.
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Algorithm 2 Dorfler Marking Strategy (Dorfler, 1996)
Require: Fix 6 € (0,1)
Require: Fix v € (0,1), small

S§=10

s=0

T=1

while s < 6?n% do
T=T-vV

for all K € 7;, do
if K is not marked then
if N > T™Ymax then
Mark K, S=S8+ K

s=5+n%
end if
end if
end for
end while

Note that when 6 is small one will usually obtain a more optimal mesh, but at a very large cost in
adaptive iterations and thus solve time. The complete adaptive process stops when nr < e or S = ().

Assume that one has computed a set of error estimators {nx} for each element K € 7;,. Assume
also that on this set one has calculated a global error estimator

nr= > Nk (2.2)

KeTy,

and that one has determined the largest value
Tmax = }(nea%l{nK}

The goal here is to form the set S C 7.

We now present some modifications to the Dorfler marking strategy which has been implemented
in our code. First, let {nx} be sorted in descending order, call the element index set associated with
this ordering of the ng’s ﬁ Note that by sorting the estimators in decreasing order and traversing
the list in the same manner, one essentially duplicates the Dorfler strategy in that the largest
estimator contributions are taken first. This can be seen in Figure 2.15 where the crosshatched area
indicates the fraction 6 of the global estimator total which is marked for refinement. In this initial
strategy, 0 is input and fixed. The process is illustrated in Algorithm 3.

There are a number of issues which need to be addressed with both marking strategies. It is clear
that the choice of 8 affects greatly the quality of the resulting mesh and ultimately the total number
of adaptive iterations and solve time required to achieve the tolerance e. The SER process continues,
marking a fixed fraction of the global residual, driving the peak of the distribution illustrated in
Figure 2.15 toward the left and smaller nx. Note also that if the distribution of the estimator were
truly equidistributed, the distribution would be a delta function located at the mean of the estimator
distribution.

Another issue occurs when one is close to the desired tolerance, and the fixed value of 6 produces
nr < € where n7 is much smaller than e indicating that one refined more triangles than was necessary
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Count

Nk

Figure 2.15: Typical Estimator Distribution and Marking

Algorithm 3 Fixed # Marking Strategy

Require: Fix 6 € (0,1)
S=10
s=0
ifnr >e then/\
for all K € 7}, do
Mark K, S=S+ K
s=s+ 77%{
if s > 6?1 then
break
end if
end for
end if
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to reach the input tolerance. While one may say that this is okay, input tolerance has been achieved,
one would like to use € as a control on the adaptive process and thus overshooting the adaptive
tolerance by a great deal is not desirable.

It is clear that one requires some method of choosing a variable 6y which would result in many
triangles being refined initially in somewhat of a greedy manner, and which would result in a more
selective refinement choice when one is close to the desired estimator tolerance. To provide moti-
vation for our method, note the following a priori error estimate (Baker et al., 1990; Prudhomme
et al., 2000):

1/2

2(r—1

=l sC(z R0 z,K) )
KG'Z’}L

where ¢ is a constant independent of A and u. Thus, when refining uniformly with h — k' = h/2,
one expects the error in the energy norm to reduce by approximately a factor of 2P, where p = r —1.
Thus, we utilize the following heuristics regarding the error estimator 7:

Inzll1,n0 =27 In7ll1n0

mac 1,010 = 277 0k |

1,h,K -

Note that the energy norms on the left hand side of these equations involves the higher dimensional
space V.
This leads us to define the following useful notation:

e Define ¢ := T as a test indicator as to how close one is to achieving the adaptive tolerance e.

€
e Define € := 2P where p = r — 1 is the degree of the polynomials used on each triangle. ¢ is the
expected a priori global reduction in ||Ve|| or ||n]|1,, due to uniform refinement (h — b’ = h/2)

of the entire ersh.

€
e Define § := — as the target tolerance in an idealized situation where the error is equidis-

||
tributed among all triangles K € 7j,.

When ¢ > £, uniform refinement of all triangles should not reduce the estimator by more than a
factor of £, and thus one can be aggressive in choosing triangles to be marked for refinement, i.e.,
Ay will be close to one. When ¢ < &, one has to be be more selective in choosing 6y so as to try
and hit the desired adaptive tolerance in few adaptive iterations (ideally, one adaptive iteration).

We can now fully describe our marking strategy, detailed in Algorithms 4 and 5. We will work
with the distribution of log, n% as shown in Figure 2.16 instead of the distribution of 7% as shown
in Figure 2.15. This allows us to determine a threshold distance of ¢ + 2p beyond which triangles
which are refined will in general not end up producing triangles with log, n% < g.

¢>¢&.

When in this range, one is interested in global reduction of the estimator and thus one refines any
triangle greater than the threshold g+ 2p. This is illustrated in Figure 2.16, where all triangles in
the crosshatched area will be refined. Note that the mean of the distribution will shift to the left.

¢<¢&.

When in this range, one is interested in local reductions of the estimator and thus one refines any
triangle greater than the threshold g+ 2p such that the predicted reduction accumulated on a triangle
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Algorithm 4 Variable § Marking Strategy

Require: Adaptive Iteration i, ny = nr, n7r,i—1
¢y = THETAR
S=10
s=0
if np/e < 1.01 then
return
end if
if nr >e¢ then/\
for all K € 7;, do
Mark K, S =S+ K
s=s+ 77%{
if s > 0% n% then
break
end if
end for
end if

Algorithm 5 6y Determination: THETAR

Require: (,&,n>,q,p
thresh =g+ 2p; s, =0
if ( > ¢ then _
for all K € 7;, do
Sp = Sr + 77%(
if log, n% < thresh then
break
end if
end for
else
Pe = 77’%’ -
for all K € 7;, do
Sp = Sr + 77%(
Pe = De — Mic + M5 /€
if (p.)*/?/e <1 then
break
end if
end for
end if

Oy = (57‘/77%)1/2
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Figure 2.17: 0y Marking: ¢ < ¢

by triangle basis will hit the input tolerance e. This is illustrated in Figure 2.17, where all triangles
in the crosshatched area will be refined. Note once again that the mean of the distribution again
will shift to the left.

A couple of notes regarding this marking strategy. First, uniform refinement occurs on the first
few levels until the global estimator comes within range of achieving the tolerance on one step based
on a priori analysis. Since experience shows that when starting with a coarse mesh the first few levels
are refined uniformly anyway, this algorithm is optimal when far away from the target tolerance.
Finally, one should note that we require the final mesh to satisfy Ues < 1.01.

€

Theoretical justification and rigorous proof of the effectiveness of this method for now lies only
in the numerical results. Figures 2.18-2.19 provides some sample estimator log, n? distributions
utilizing variable 8y marking and which correspond to the adaptive meshes displayed later in this
thesis.

2.6.2 Refinement

As has been mentioned before, DG allows for regular refinement of triangles. The overall process by
which this is accomplished is as follows:

1. Traverse 7 (current mesh) and mark K € T for refinement/coarsening. The List RTri then
contains a list of triangles to be refined, the List C'T'ri contains a list of triangles to be
coarsened.

2. Identify additional K € 7 that need to be refined in order to satisfy the two neighbor condition.

Sort RT'ri by increasing level, then by lexigraphic order.

4. Refine each K € RTri producing four children Ky, K, Ko, K3, updating T trees and T, E',
EB | N lists.

®
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The detail of the refinement process involves management of the geometric mesh objects, USED/AVAIL,
and LEAF/NLEAF and does not require much explanation here other than to state that existing
data objects are reused when they can be, i.e., an edge instance exists only once in the data object
storage, even though more than one element may share the edge.

2.6.3 Coarsening

We impose a condition on coarsening such that coarsening can occur only if all four children are
marked for coarsening. In that case, the four children elements are replaced by their common parent
element in the mesh.

We have not implemented coarsening actions for elliptic problems considered in this dissertation,
although the algorithms have been developed and coded and tested on a moving mesh program
called rotsing or rotating singularity. This program allowed us to reuse data objects in the refine-
ment process which were previously released during a coarsening process. Basically, we simulated
a point singularity in Q and described a refinement ball around the singularity. We then moved
the singularity and its neighborhood around the origin and handled the refinement and coarsening
actions accordingly. When the singularity returned to where it was started, the exact same mesh was
obtained with a nice bound on the memory and data object usage. This provides proof of concept
which will be applied later when research moves to time dependent problems.

The coarsening impact on object management is the inverse of the refinement process, and thus
will not be talked about here.

2.7 Affine Transformations

In finite element methods, quadrature over each triangle and edge may require approximating the
integrals on very small triangles which can result in quadrature errors. A common technique in FEM
is to perform quadrature over a reference element and utilize affine transformations to transform the
quadrature rule approximations between the reference element and the actual triangles in the mesh.
This technique also allows for calculation of templates for some integrals on the reference element
which can be reused during the calculational process. Here we describe the affine transformations
used in this research and implemented into our codes.

Let X be a polynomial space over K, dim X = I. Choose a set of nodal points {%}L, in K
such that any function & € X is uniquely determined by its values at the nodes {%;},, and

I
0(R) =D 0(%)i(%).
i=1

The functions {gi;l}{:l form a basis for the space X with the property

¢i(%;) = 045
Now consider the invertible affine mapping Fix : K — K of the form
Fg (%) = Tkkx + bgk.
The mapping Fx is a bijection between K and K, Tk is an invertible 2 X 2 matrix, and bk is a

translation vector.
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Over each element K, one can define a finite-dimensional function space X g by

Xg=XoF' ={wv=100Fg'0eX}.

Thus, R
v(x) =9(%) Vxe€ K, %€ K, with x = Fg(X).
Now, define
xK = Fr%), i=1,...,1
and

oK =dioFl, i=1,...,L
Then, the functions {¢X} have the property that
o (x5) = 635
2.7.1 Affine Transformations: FK,Fgl

Consider the affine transformation mapping the reference triangle K onto any K € Tj, as illustrated
in Figure 2.20. We define Fx : X — X as

where

K K
AK _ <CL}(1 a}<2> _ <$1 — X3 Xro — CCg)
az; A2 Y1 =Y Y2—UY3

N CAEE
b= (3% ) = ;1)

We can now find an explicit representation of F’ gl X — X

and

Fi' (%) = Al (x — br) = %

where

. agy  —ay) _ 1 (ye—ys wz—a2) _ 1 [af) ap _ 1 Ax.
K 7 det A \—ady  afy 2IK| \ys —y1 1 — a3 2|K| \ady a5y 2|K|

Note that we can write
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1
Fr : K—- K K
0> (x1,y1)
2
($31y3)
(0,1)
Fgl K - K
(0,0) (1,0)

Figure 2.20: Affine Transformation from K onto Reference Triangle K

and

The component functions used above are thus:

R %) =ald+aly + 0K

9" (R) = ayy & + azyf + b

R (%) = ﬁ (kS — b) — afS(y — bE))
5% (x) = ﬁ (—afS(x — bF) + alS (y — bE))

The Jacobian matrices for Fi, Fgl are

ofE  ofK
~ ~ K K
gk — | 0z 0y :<a11 a12):A
F g% 9g¥ ak aff K
0% oy
and
ofK  ofK o 0%
K |0z oy |_|ow gy| - L (e —aly)_ a1 4
T = ok agk | T\ ap oy | T IR ks af) T AR T gy
Oz Ay or Oz

Finally, note that Ag is the affine transformation coefficients stored with each triangle K.
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2.7.2 Basis Functions

In finite element methods for Lagrangian basis elements with N degrees of freedom, the basis func-

tions ¢;(x) € Vp,, j=1,...,N
1 ifi=yjy
(x;) = 2.6
8 (x,) {0 i (26)
Assume that on K the following functions are defined
N
u(x) = Y u(xf)of (x)

j=1

and

where N is the number of degrees of freedom and for convenience we will drop the superscript K
annotation unless otherwise needed.

2.7.3 Derivative Transformations

Since quadrature (1D and 2D) will be performed over part or all of the reference element K, one
will need expressions relating partial derivative on K to partial derivatives on K.

First Order Partials

Ox 0z dx 0y Oz

_ L (0, 09,
_2|K|<afca“+ag“21

99; _ 00,08 09, 05

and

0¢; _ 00,0 | 06,05

oy 0% dy | 07 Oy

1 [(0¢;. . 0d;.
_2|K|<8:%a12+ 55 2|

Finally then

_ 1 0p; . 09; . 0p; . 09; .
8n¢g = m [(@au + 8—Qa21 Ng + 9% aio + a—gagg Ny | -
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Second Order Partials

%¢; 0%;\ _ 0¢;\ 0% + 0¢;\ 99

Ox? 8:0 Ox 856 ox 817 8y Ox 8:0
1 o P . Py i 0%,
(o) [ g P gg; g

and

0*¢; 0¢; 0¢;\ 0% z 0 (0¢; 09

0y? 6 Oy 6:10 Oy 8y oy \ 0y ) Oy
o 0%0; 0%¢; | ., 0%,

(2|K|) [ gzt 2ndngrs; w5 T 02 -

and the Laplacian

Po; | 07

Ay = 0x? + Oy?
1N\, .o\ 0%, 929, 9%,
= (m) (afl +a3 ) 932 + 2 (G11G21 + G126G22) 8@8;} +( aoq +a22) 8y2J

2 2 27 27
_ 1 6¢7+ 28A¢]A+C36fb] '
2|K| 1572 010y 012
Third Order Partials
I(Ag;)

0 0

B ‘ 0% 0 ‘ @
%A% = %(A@)% + B_Q(A@)ax

Now

and
O ngp = D A5 2% L 9 (ap

implies after some calculations

d 1)’ ;. ) B, . ) 93¢, o,
%A¢j—<m> lauclﬁij+(a1102+021€1)A—¢]+(a1103+02162) 0; + as1c3—F5=- 0;

01207 02072 o3
1 \*|, 9%, Do, o, Do,
= _ d J d J d J d 7
<2|K|> l 1573 + 125)56263) + 138:%6 5 T d1a—=2 BYE
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%A¢j _ <ﬁ>3 l&uq%@ + (G12¢2 + &2261)% + (a12cs + 62262)% + d2203%i’j
Therefore,
+ <d21 %3;;37 + dao ;;%jg +das 88;(%2 + daa %) n”}

2.8 Numerical Quadrature

2.8.1 GGaussian Quadrature

Numerical quadrature rules utilized in this research were implemented based on standard Gaussian
Quadrature available from any standard numerical analysis textbook. Basically, for 1D Gaussian
quadrature a set of ordered pairs of abscissas and weights (x4, w,) are maintained in the code to
obtain various degrees of accuracy based on the polynomial degree » — 1. This is what is used in
computing the edge based line integrals. For 2D, a set of ordered triples (x4, yq, wq) are maintained
for various degrees r — 1 in a similar manner. To compute an approximation to the integral, one has
to simply sum the weights multiplied by the integrand evaluated at the abscissas.

2.8.2 Templates

Templates are the term we use for calculations which can be done at the beginning of the run and
which do not change during the run. All basis functions are evaluated at all quadrature points
on the reference triangle K and edges of the reference triangle which reduces both 2-D and 1-D
approximation of integrals to simple sums.

In addition, penalty terms involving (¢;,¢;), for both within element and between elements
along an edge e are evaluated at the beginning and stored in penalty and penalty miz templates for
both E112 and E114.

2.9 Linear Solvers

The use of the SIPG formulation produces a large sparse, symmetric positive definite linear system
which is required to be solved at each adaptive iteration. Coupled with the fact that a natural
hierarchy exists in the geometric mesh, there exists a selection of linear solvers that can be used to
approximate the solution. Due to the sparse nature of the stiffness matrix, all of these methods are
iterative in nature.

While there exists much literature regarding these basic algorithms, there are some excellent
treatises which were used quite often throughout this research. For an overall treatment of many

40



Table 2.9: Linear Solver Support Routines

Routine Purpose Algorithm
mas_ddot Dot product: o = z'y 6
mas_daxpy | Daxpy: z «— z+ ay 7
mas_dcopy | Vector copy: y «— x 8

mas_Dmltav | Matrix-vector multiplication: y «— Ax 9
mas_Resid | Residual calculation: r «— b — Az 10

Algorithm 6 mas_ddot: Dot Product
Require: Composite Mesh Level £, Composite Level Mesh 7,
Require: Vectors z, y
a=20
for all ¢ € [0, £] do
for all K € T}/ do
a=aoa+ x}—(y K
end for
end for .
for all K € T2'*/ do
a=auoa+ x-lr(yK
end for

iterative methods, see Golub and van Loan (1996), Saad (2003), and Greenbaum (1997). For classical
iterative methods such as Gauss-Seidel and Jacobi, see Young (1971) and Varga (1962). For more
on Multigrid methods and algorithms, see Hackbusch (1985) and Bramble (1993).

2.9.1 Notation and Support Algorithms

In its most basic form, one desires to solve the matrix equation Az = b. We will commonly utilize
the residual vector r = b— Az in our computations. Let 7 := 77, be the current mesh with hierarchy
level L. Regarding multi-level methods, we will consider the set of composite level based meshes
{’ZQ}ZL:O as defined in Equation 2.1. There may be on occasion the need for auxiliary or temporary
vectors, these will be indicated by p, ¢ and others as required. To indicate a particular iterate of the
iterative solver algorithm, we will use a superscript in parentheses, i.e., (¥ would be the z vector
at the i*" solver iteration.

Integral to any matrix iterative algorithm are basic computational routine which are utilized
repeatedly. Because of the sparse nature of the systems to be solved and the specialized data
structures that we have implemented, we have developed a number of routines which in essence does
for our data objects what BLAS does for dense scaler, vector and matrix operations. These routines
are listed in Table 2.9, and the algorithms are listed in Algorithms 6-10.

Note that mas Dmltav and mas_Resid both involve multiplication by the global stiffness matrix
A. However, this matrix consists of diagonal matrix blocks Ay associated with triangles and off-
diagonal matrix blocks A, associated with interior edges, i.e., the global stiffness matrix is never
fully assembled, it is put together “on the fly” and only the action on a vector is computed.

In fact, there are two possible instances of A g which must be maintained for any triangle K which
exists on the LEAF of 7. Consider a triangle K € 7, LEVEL(K) = L—1, and there exists a hanging
node on an edge e € 9K. One can view this situation by considering Figure 2.2(c) with L = 2,
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Algorithm 7 mas_daxpy: Daxpy

Require: Composite Mesh Level £, Composite Level Mesh 7,
Require: Scaler o, Vectors z, y, 2z
for all ¢ € [0, £] do
for all K € T}/ do
ZK = QTK + YK
end for
end for .
for all K € Tg” do
ZK = QK + YK
end for

Algorithm 8 mas_dcopy: Dcopy

Require: Composite Mesh Level £, Composite Level Mesh 7,
Require: Vectors z,y
for all ¢ € [0, £] do
for all K € TéLf do
Yk = TK
end for
end for .
for all K € TéVLf do
YK = TK
end for

Algorithm 9 mas Dmltav: Matrix-Vector Multiplication

Require: Composite Mesh Level £, Composite Level Mesh 7,
Require: Vectors x,y, matrix A
for all £ € [0,£) do
for all K € TéLf do
Yk = AK,nbrstateIK
end for
end for
for all K € T, do
Yk = Ak oK
end for
for all £ € [0,£) do
for all e € EEI’Lf do
Yk- = Yk- + Acict; Y+ =Yg+ + Alrk-
end for
end for
for all e € EL do
Y- = Y- + Acic+; Y+ = Y+ + Alx -
end for

42



Algorithm 10 mas Resid: Residual
Require: Composite Mesh Level £, Composite Level Mesh 7,
Require: Vectors x,r, b, matrix A
for all £ € [0,£) do
for all K € T}/ do
rg =bx — AK,nbrstatexK
end for
end for
for all K € T, do
Tk =bx — Ak 0Tk
end for
for all £ € [0,£) do
for all e € EZI"Lf do

T- =Tg- — AeTgt; T+ =T+ — Al Tg—
end for
end for
for all e € Eé do
k- =Tg- — AeTpr; T+ =Tt — Alwge
end for

K = K(0,1). Then matrix-vector multiplication on composite mesh 73 (and on 77) will involve
a diagonal block matrix Ax which has interaction with two neighboring triangles K(1,1), K(1,2),
while matrix multiplication on composite mesh 7y will involve a different diagonal block matrix
which interacts only with K(0,0) (Figure 2.2(a)). To indicate which instance of Ag is used in
matrix-vector multiplication, we will use A o to indicate interaction of K with its neighbors only
through its full edges and A ; to indicate that K interacts with its neighbors where there exists at
least one edge with a hanging node. The instance or state of K is indicated with the nbrstate flag in
the TRIANGLE_t data object (see Figure 2.8), and the appropriate instance of the diagonal block can
be represented as Ax nbrstate- Finally, only one instance of the off-diagonal block matrix associated
with edges e € £ needs to be maintained since each edge uniquely separates two triangles, K+ and
K~

2.9.2 Conjugate Gradient

Conjugate Gradient (CG) is the workhorse for numerical analysts iteratively solving a symmetric
positive definite linear system of equations. The algorithm used in our implementation is listed in
Algorithm 11. Through a sequence of solver iterations, the algorithm is guaranteed to converge in
N iterations if one were working in exact arithmetic. In practice the algorithm achieves an error
level close to machine precision.

Note that when CG is starts, the previous solution u obtained from the previous adaptive iteration
is embedded into the current finite dimensional space. This utilizes routine Embed Prev_Soln which
relies on the embedding operators utilized in Multigrid to embed the solution on the parent triangle
K into its four children in the case that K was just refined. In the case where K has not been refined
in the previous adaptive iteration, the embedding operator is simply the identity. Were coarsening
also being employed, the projection operator from Multigrid would also be utilized. The previous
solution is maintained in the vector s.
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Algorithm 11 Conjugate Gradient (CG)

Require: Mesh 77, solver tolerance €5, Vectors s,u, b, r, p, ¢, matrix A, total dof N
if L > 0 then
u <— Embed_Prev_Soln
else
u<— 0
end if
r«—b— Au
for (slter = 1;slter < itmax;slter + +) do
pL =171 erripe = (p1/N)Y?
if erri,e < €5 then
break
end if
if sIter =1 then
p=r
else
B=pi/p2;p Bp+r
end if
q— Ap;d=p'q
if d # 0. then
a=pi/d
end if
U= ap+up T T —ag; p2 = p1
end for
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In most of the runs presented in this dissertation, the solver tolerance €, was set to either 1.0e-12
or 1.0e-13. In addition, a maximum number of solver iterations itmax primarily as a debugging
aide. Once this tolerance has been reached, CG is finished and the solution is returned in the vector
U.

2.9.3 Multigrid

Multigrid is a powerful yet complex algorithm which provides for solutions of linear equations to
be obtained in a time proportional to the number N of unknowns in the linear system. The basic
idea is to combine a recursive series of coarse grid corrections to the error problem Ae = r which
effectively reduces high frequency components of the error coupled with efficient smoothing of the
low frequency components of the error to obtain a better approximation to the solution. For any
Multigrid algorithm to work, there are some necessary algorithms which must be incorporated
including projection and embedding operators and some sort of smoothing algorithm. These are
described below. At the end of this section, the Multigrid algorithm utilized here is explained in
more detail.

Projection and Embedding Operators

To calculate the projection and embedding operators'! some discussion is required. It is important
to note that there are two different types of operators which transfer data between finite dimen-
sional subspaces. Embedding is defined as moving from a lower dimensional subspace into a higher
dimensional subspace. Projection is defined as moving from a higher dimensional subspace into a
lower dimensional subspace. We will treat each of these separately.

Let 1 1}3 denote the embedding operator from the coarse (lower dimension) subspace to the fine
(higher dimension) subspace. Similarly, let T ,{{ denote the projection operator from the fine subspace

to the coarse subspace. We will choose I}f = (I I’;)T as the relation between the embedding and
projection operators.'? Finally, we will deal with two different sets of operators. The first set has
to do with h, i.e., spatial embedding and projection with the same number of degrees of freedom.
The second set has to do with p embedding and projection, where the spatial characteristics are the
same but the number of degrees of freedom changes.

h Embedding and Projection. Let {x;}, j =0,...,n—1 denote the (z,y) coordinates of the n
degrees of freedom on the reference element K and {¢;}, 7=0,...,n—1 denote the corresponding
basis functions on the reference element K. Let

{xki}, k=0,...3,i=0,...,n—1

denote the (x,y) coordinates of the n degrees of freedom on the four children of K, {KO, Kl, Kg, Kg}
and {¢r;} k=0,...,3,i=0,...,n—1 denote the corresponding basis functions on the four children

of K.

11Embedding operators are also called interpolation or prolongation operators, Projection operators are also called
restriction operators.

120ften one will have If =c (IIh{)T to indicate weighting of the projection into the coarse subspace. We will work
here with ¢ = 1.
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We define M; : R? - R?*  j=0,...,3 as
MkXiZBkXi—l—bk:Xk)i k=0,...,3,i=0,.
where scaling matrix B and translation vector b are

0.5 0 0.5

0 0.5 0

0.5 0 By 0

_ 0 05 | | B 105

B= 0.5 0 T B2 |’ b= 0

0 0.5 B3 0

-05 0 0.5

0 —0.5 0.5

by

b,
bs

This defines a set of affine transformations of the degrees of freedom on the reference element K

to the degrees of freedom on the children reference elements Ky

k=0,...,

3. Therefore one can

calculate the coordinates for each degree of freedom for each child of K and store them in the matrix

C' as follows:

Moxg  Mox; Moxn—1 X0,0 Xo,1
= Mixg Mixy Mixp1 | _ [x10 X121
Moxg Moxy Moxp_q X200 X21
Msxg Msxy Msxp_q X3,0 X3
To,0 To,1 Zo,n—1
Yo,0 Yo,1 Yo,n—1
1,0 T1,1 T1n-1
1 Y10 Y11 Y1,n—1
B 2,0 2,1 T2,n—1
Y2,0 Y21 Y2,n—1
3,0 T3,1 3,01
Yso Y3 Y3n—1

X0,n—1
X1,n—1
X2,n—1
X3,n—1

We will require that the embedding operator [ Ih{ simply be the identity for any v € Vy, i.e.,

IIh{u = v. Thus, we must have

n—1 3 n—1
x):Zaj(bj ZZ kz(bkz )
7=0 k=0 1=0
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Evaluating u(x) at each coordinate {xj;}, k=0,...,3, i =

or

u(x&nfl)

®0(x0,0) $1(x0,0)
$o(x0,1)  #1(x0,1)

¢0(X(;,n71) ¢1(X(;,n71)
$o(x10)  P1(x10)
¢o(x1,1) é1(x1,1)

bo(X1m1) G1(X1no1)
Po(x2,0) #1(x2,0)
¢o(x2,1) $1(x2,1)

bo(Xom 1) G1(X2n 1)
¢o(x3,0) é1(x3,0)
¢o(x3,1) é1(x3,1)

So(xsn_1) 1(X3m_1)

Ty = (#0(C)  1(C))
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Q.0
Qg1

Qp,n—1
1,0
aq.1

a1 n—1
@20
a2 1

a2 n—1
Q3.0
31

0,...,n —1 gives us

Q3 n—1-

Thus we can define the embedding operator I}y as a 4n x n coefficient matrix:

d)nfl(XO,O)
¢n71(X0,1)
¢n71 (XO,nfl)
¢n71(X1,0)
Dn—1 (Xl,l)

S (X1m—1)
¢n71(X2,0)
On—1(x2,1)

St (Xom1)
On—1(x3,0)
On—1(x3,1)

St (X3.m1)

d)nfl (é))

where C' € R4" represents C' transformed to a column vector and which maps a vector v € R™ into
a vector v € R*". The projection operator is If = (I%)T.




p Embedding and Projection. We can proceed along a similar path for determining the embed-
ding from V}" to V;?, s=r+1,...,5, r = 2,3,4. Note that as before we will work on the reference
element K. Let the higher dimensional subspace V, contain m degrees of freedom, m > n.

{xs,i}7i:O7...,m1—1

denote the (z,y) coordinates of the m degrees of freedom of the higher dimensional subspace on K
and {¢s;} i =0,...,m —1 denote the corresponding basis functions on the same subspace. We will
require that the embedding operator I;} simply be the identity for any u € V}7, i.e., IJu = v. Thus,
we must have

n—1 m—1
u(x) =Y ;i (x) = Y asidsil(x).
=0 i=0

Evaluating u(x) at each coordinate {xs,}, ¢ =0,...,m — 1 gives us
u(xsyo) Q.0
u(xs71) Qs 1
- . (2.10)
u(xs,mfl) Qs m—1-

Thus we can define the embedding operator I as a m x n coefficient matrix:

¢0(Xs,0) 01(xs0) - On—1(Xs,0)
75— ¢0(Xs,1) ¢1(Xs,1) ce ¢>n71(Xs,1)

T

(ZSO(XS',m—l) ¢1 (Xs',m—l) . ¢n—1(x's,m—l)-

We can then define the projection operator I7 = (I5)T.

Smoothing

We utilize a block version of Gauss-Seidel iteration for our smoother. Note that by block we simply
mean that we are updating the = vector on a triangle by triangle basis. On each particular triangle
K, we update xx as one would normally do with the classical or point Gauss-Seidel, i.e.,

1
k 2 : k 2 : k+1
‘TK,i = bKﬂ' — aij:vj — aijxj

e
Kii j<i j>i

where the index j ranges over all triangles interacting with triangle K through K’s edges. There
will be additional variants of this version of the smoother introduced in § 2.10.2. Our Gauss-Seidel
smoother is shown in Algorithm 12.

The Multigrid Algorithm

We are now ready to discuss in more detailed our implementation of Multigrid. Algorithm 13
illustrates the main Multigrid solver routine and Algorithm 14 illustrates the recursive Multigrid
cycle algorithm. If one chooses 1 = 1 one obtains a V-cycle Multigrid scheme, if © = 2 one obtains
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Algorithm 12 Smoother 0: GS_Block

Require: Composite Mesh Level: £, Mesh Hierarchy: 7., Number of smoothings: v
Require: Vectors x,y, Matrix A
Calculate ¢y for global/local smoothing
for (i =0;i <wv;i++) do
for ({ = lo;¢ < L;0++) do
for all K € Tff do
xx < Updated over all DOF using point GS
end for
end for
for all K € T, do
xi < Updated over all DOF using point GS
end for
end for

Algorithm 13 Multigrid (MG)

Require: Mesh Hierarchy T, solver tolerance €5, v1,v2, i
Require: Vectors s, u, b, r, p, q, matrix A, total dof N
if L > 0 then
u <— Embed_Prev_Soln
else
u«—0
end if
for (sIter = 1;slter < itmaz;slter + +) do
u «—MGCYC(L, v1,v2, b, ur, br, L)
r—b— Au
p=r'r
erTioc = \/p/N
if errie < €5 then
break
end if
end for
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Algorithm 14 Multigrid Cycle (MGCYC)

Require: Mesh level £, Composite Level Mesh 7z, v1,v2, p
Require: Vectors z,y, z, matrix A
if £ < L then
for all £ € [0, £] do
for all K € T,/ do
TK,c+1 — Tk,.; TK,L < 05 Yk, £41 < YK,L; YK,L < 2K,
end for
end for
for all K € T)'"/ do
zi,c < 0; Yk, < 2K,
end for
end if
if £ =0 then
zo < Coarse_Solve(xo, Yo, Ao)
else
xr — S (xz,yc, AL)
Ze «—yr — Acxr
zpo1 e 157 2,
for (i=1,u) do
Tr—1 <MGCYC(L — 1,11, v, by TL—1,Yr—1,20—1)
end for
zr —I5 jxr
xp — S (CC[:MJ[:,AL)
end if
if £ < L then
for all £ € [0, £] do
for all K € T,/ do
TK,L+1 < TK,L T TK,LH+15 YK,L < YK ,L+1
end for
end for
end if
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a W-cycle Multigrid scheme. The number of pre-smoothings performed is v; and the number of
post-smoothings performed is vs.

The exact solve performed on the coarsest hierarchy level is performed using the clapack dposv
and clapack_dpotrs routines from ATLAS package (see 2.11.3). Note the the cholesky factorization
is performed once on the full level 0 stiffness matrix (including the presence of 0.0’s), and that future
use of the exact solve is simply a backward-forward substitution process.

A couple of important notes are in order here. First, due to the manner in which we are storing
our vectors, we maintain a separate (ug,bx) pair for each possible level in the hierarchy. In the
MGCYC routine we save the previous values upon entrance and restore the values upon exit of
the routine. This allows one to work with “working” vectors which simplifies the algorithms used
throughout Multigrid and one does not have to worry about overwriting values which will be required
when one returns from the recursive calls. Second, we embed the previous solution obtained into
the current mesh so as to obtain a better starting approximation. Third, for implementation of the
Multigrid algorithms for the biharmonic test problems, we utilize a variable number of smoothings,
increasing the number of smoothings on each successive coarser level. This appeared to help with
the number of solver iterations required to reach the solver tolerance. Finally, for all of the runs
referenced in this research, we utilize p = 1, v; = v9 = 4 when using Multigrid as a solver.

2.9.4 Preconditioned Conjugate Gradient

Our implementation of Preconditioned Conjugate Gradient (PCG) utilizes Multigrid as a precon-
ditioner. Our implementation of PCG is shown in Algorithm 15. When we are using MG as a
preconditioner, we utilize u = 1, ;3 = 1o = 2. In addition, we ensure that MG is a symmetric pre-
conditioner in that during the pre and post smoothing actions, we utilize forward Gauss-Seidel as
the pre smoother and backward Gauss-Seidel as the post smoother. This is rather easy to implement
as one just visits the elements and unknowns in reverse order.

2.9.5 Solver Comparison

Some comparison charts presenting a comparison of the different solvers for some selected test cases
are presented in Figures 2.21-2.28. In this comparison we look at CG, MG, and PCG.

There are some observations which must be made here. For the multilevel algorithms MG and
PCG, the number of solver iterations becomes essentially constant. Referring to Figure 2.21(b) one
can see that PCG reduces the residual approximately by an average multiple of 0.25 each adaptive
iteration, while CG approaches 1.0 asymptotically, i.e., not much average reduction in residual occurs
per solver iteration, i.e., it is not very efficient. Looking at Figure 2.22(a) one can see that PCG
takes less time to solve for the unknown per dof. Finally, one should note that in Figure 2.22(b)
the initial high MFLOP/s rate for MG and PCG is due to performing an exact solve on the very
first multilevel iteration using the optimized BLAS from ATLAS linked with lapack factoring and
solve routines. Overall it is clear that PCG and MG are very good solvers, tweaking the various
parameters might provide even better performance.

2.10 Performance Optimization and Monitoring

2.10.1 Background

One of the goals of this research was to develop an adaptive DG FEM program which runs quickly.
In order to achieve this there are three areas which we focused on. The first area was that of compiler
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Algorithm 15 Preconditioned Conjugate Gradient (PCG)

Require: Mesh 77, solver tolerance €5, v1, V2, it
Require: Vectors s, u,b,r,p,q,v, z, matrix A, total dof N
if L > 0 then
u <— Embed_Prev_Soln
else
u«—0
end if
r—b— Au
for (slIter = 1;slter < itmaz;slter + +) do
z+—0
z «MGCYC(L, v1,v2, i, 2,7, V)
p1=1"r; pa1 = 2'7; errioe = (p1/N)
if errie < €5 then
break
end if
if slter =1 then
pez
else
/8 :le/Pz2; p<_ﬂp+z
end if
q—Ap; d=p'q
if d # 0. then
a=p.1/d
end if
U ap+ U T T —Qq; P22 = P21
end for

1/2
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choice and optimization flags. We utilized primarily the gnu compiler collection during the course of
this research. For the machines we were running on (Intel Pentium4), we found that the following
choice of compiler flags performed the basic optimizations one would want from a compiler:
-03 -march=pentium4 -mcpu=pentium4 -msse -msse2 -mfpmath=sse -malign-double

-funroll-loops -finline-functions.

Thus, we did not attempt to do much “manual” performance optimization tuning. For more on those
techniques, see Goedecker and Hoisie (2001), Weiss (2001), Beyls (2004), and Kowarschik (2004).
Figure 2.29 shows comparison timings for some selected compiler flags and choices. Note that in
Figure 2.29 the following notation is used:

e NoOpt: gcc -00 - No Optimization

e O20pt: gcc -02 - Medium Optimization

e FullOpt: gcc - Aggressive Optimization

e InOpt: icc - Aggressive Optimization (Intel).

The second area is based on the ideas put forth by Douglas et al. (2000) termed cache blocking.
The basic idea applies to an algorithm such as Gauss-Seidel which is required to be repeated a fixed
number of times, i.e., Gauss-Seidel Smoothing inside of the Multigrid method. I elaborate on how
these ideas can be applied to our situation in § 2.10.2. I should note that the Douglas cache blocking
scheme is only applied to the composite level mesh on the current maximum level of the hierarchy L,
and differs from his implementation in that I do not attempt to apply cache blocking when working
with composite level meshes on levels ¢ < L in a Multigrid context. This seemed like a reasonable
approach since the majority of the work is done on the full Leaf. Note that we did not perform all
of the optimizations that Douglas identified, therefore we did not include the residual calculation
inside of the cache blocked Gauss-Seidel as mentioned in Douglas et al. (2000).

The last area in which performance gains can be realized has to do with the organizational
layout of the stiffness matrix in memory. Recall that these block matrices have some data contiguity
based on the manner in which the elements are managed. To test further we allocated large chunks
of memory to store “working” copies of the complete stiffness matrix in a Modified Block Sparse
Row format (Saad, 2003) on the Leaf lists and on the Leaf and Non-Leaf lists for each level in the
hierarchy. This basically doubles the storage required for a run, however results are promising and
are presented below. One are of future research will be to convert to an object management strategy
which combines the best of the list based approach with the MBSR storage format for performing
the matrix calculations.

2.10.2 Cache Blocking

Suppose that one is given a mesh 7 (which implies all of the above partitions exist). Associated
with this mesh are N, := |T| triangles. Since the majority of computations are 7 based iteration,
it makes sense to try and reuse data in cache as much as possible, since for large meshes 7 will
not exist completely in cache. This strategy is most applicable to routines for which repetitive
calculations can be be broken up into blocks which can be computed in parallel, i.e., little or no
intercommunication is required. It is fortunate that Multigrid using Gauss-Seidel as a smoother can
be adapted in this manner in a number of ways. So, following primarily the work of Douglas et al.
(2000) (see also Strout et al. (2001) for another variant), then one must estimate accurately the
size of the data used in the computations and partition 7 in an advantageous manner so that cache
reutilization (primarily L2) is maximized; this is often called cache blocking or cache tiling.
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Assume that the cache sizing calculations determine that C' triangles and their associated required
data will reside completely in a percentage of the total L2 cache'® Thus, the number of cache blocks
for 7 would be N; := max (L%J, 1). For now, let N, be the fixed number of sub-blocks or zones 4
which subdivide each cache block. This leads to the following collection of subsets of 7:

S={S} = {K eT}

L
Sy = @ S{ = {K € T| cache block b}
=0
N. '
Sy = @ Sf. = {K € T}"’| cache block b}
c=1

St ={K ¢ TeLf| cache block b, cache sub-block ¢}

N.
Sy =@ s, = {K € T,""| cache block b}
c=1

SféN ={K ¢ TéNLf| cache block b, cache sub-block c}.

The basic idea for cache blocking of Gauss-Seidel is to partition the domain into blocks, and
partition each block into sub-blocks, the first sub-block which is the block-block boundary of each
block. We utilize the METIS (see 2.11.7 and Karypis and Kumar (1995)) software to perform this
task. We then divide each block into sub-blocks numbering in increasing order the sub-blocks from
the block boundary toward the interior. The number of sub-blocks is determined based on the fixed
number of repetitions required of the Gauss-Seidel algorithm. The result of this process is illustrated
in Figure 2.30 for 7 with N, =4, N. =4, N, = 3.

One area of future work is to utilize more sophisticated domain decomposition methods to obtain
the solution of the linear systems. The basic process of decomposing the domain has been done.
One area which was explored was utilization of overlapping the blocks along the block boundaries.
This method showed some promise and will be explored further at a later date.

Note also the following:

N.
Ty=JToe, b=1,.... N (2.11)

c=1
Tb1 n Tb2 = Tbll n Tb21, b1 # bo (212)

Cache Blocking for Gauss-Seidel

To implement cache blocking for Gauss-Seidel the key point to realize is that any elements in sub-
block ¢ interact only with elements in sub-blocks £ — 1, /¢, and ¢ + 1. These are exactly the elements
that Gauss-Seidel would require interacting through the edges of the level ¢ elements. Thus, for
any particular block, update all blocks one time. Then, one can update the interior sub-blocks,
reducing the domain that is updated for each sweep. Note that this method is consistent with
regular Gauss-Seidel in that no elements are updated with neighboring unknowns which have not

13For the Pentium 4 being used, 512 KB cache exist. It is reasonable to assume that between 30% and 50% of L2
cache would be owned by our process on a lightly loaded machine.
14N, = Ns + 1 where Ny is the number of repeated sweeps of the algorithm to be repeated.
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been updated. Since the block was sized so that all necessary elements would fit in cache (L2), one
will not be penalized with cache miss penalties. At this point, only the most interior elements in
the block being updated have been updated the required number of times, i.e., the block is only

Figure 2.30: Block/SubBlock Partitioning for 7 with N, =4, N, =4, N, =3

partially updated.

One then continues through all of the remaining blocks and repeats the partial updating. At
this point, one needs to backtrack through the blocks and finish the updating process for each
block, proceeding from the boundary sub-block inward. The complete algorithm is presented in

Algorithm 16.

For the situation depicted in Figure 2.30, the subblocks should be visited in the following order
in order to be consistent with Gauss-Seidel sweeping through the complete domain three times:

e Primary Sweep:

T4

Tys3

o

T2y

T23

T34

— T14,T13,T12,T11,T14,T13, T12, T14, T13
To4,T23,T52,T51, 154,153, 122,124,123
T34,T33,T32,T31, 134,133,132, T34, T33
Taa,Tuz, Tao, Ty1, Taa, Tag, Tyo, Taa, Tu3

e Backtracking Sweep:

Ti1,Th2
151,15
131,132
Ta1,Taz
T11

Ta

T3

T41.
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Algorithm 16 Smoother 1: GS_Block_CB

Require: Composite Mesh Level: £, Composite Level Mesh : 7.
Require: Cache Blocking: S, Number of Blocks: Np, Number of sweeps: N
Calculate £y for global/local smoothing
for (b=1;b < Np;b++) do
for (i =0;i < Ng;i++) do
for (¢=Ns+1;¢>i;¢c——) do
for (¢ =4o;¢ < L;£++) do
for all K € Sf, do
zx,c < Updated over all DOF using point GS
end for
end for
for all K € S & Sfc’N do
zk,r < Updated over all DOF using point GS
end for
end for
end for
end for
for (i=Ns—1;9i>1;i——) do
for (b=1;b < Np;b++) do
for (c=1;¢<i;¢++) do
for (¢ =lo;¢ < L;¢++) do
for all K € Sf, do
zx,c < Updated over all DOF using point GS
end for
end for
for all K € SL @ SN do
zx,c < Updated over all DOF using point GS
end for
end for
end for
end for
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Figures 2.31-2.32 illustrates the effect of utilizing cache blocking coupled with Modified Block
Sparse Row (MBSR) storage schemes. Note the following notation:

NN_NN: No special performance optimizations,
CB_NN: Cache Blocking only,

NN_MB: MBSR storage,

CB_MB: Cache Blocking and MBSR storage.

The following observations can be made:

e MBSR storage implies data contiguity of global stiffness matrix,
e Clear benefits in L2 cache misses using Cache Blocking,

e Clear benefits in TLB data misses using MBSR storage,

e Clear time savings using both.

2.10.3 Performance Monitoring

There are various performance monitoring tools available to the programmer. One option which is
readily available is to turn on profiling via the —pg compiler option, and then process the resulting
profile data with gprof. This will provide the programmer with either a function (or a line) profile
of the time spent in each routine.

Charts presenting a comparison of the different optimization techniques as discussed above and
applied to MG and PCG solvers for selected test cases are shown in Figures 2.33-2.36. Table 2.10
describes the notation of the different cases used in the figures. Note that the table describes only
the last 4 characters, the meaning of cg, mg, pcg is clear.

During the course of the development of the software for this research, much use was made of the
PAPI performance counter monitoring software. PAPI provides the user with the ability to monitor
the hardware performance counters which exist on most modern CPU architectures. The software is
portable and functional on many different hardware architectures, although it should be pointed out
that only a limited subset of the counters are available on the Intel Pentium 4 IA-32 architecture.
The set of PAPI counters which could be accessed together during a run are listed in Table 2.11. For
the f4, r = 4, adaptive run we illustrate a slightly different comparison utilizing PAPI performance
monitoring variables as shown in Figures 2.37-2.40. For more on PAPI, see § 2.11.4.

Some observations need to be made here. All MFLOP/s rates presented are aggregate for a
complete run, i.e., taking the total PAPI count of floating point operations divided by the total time.
Only by looking at the accompanying detail graphs of the various cache misses does one obtain a
clear indication (other than total solve time) as to effect of the different algorithms employed. Tt
is clear that using MBSR storage coupled with cache blocking consistently seems to give the best
results. Note also that the MBSR storage scheme coupled with cache blocking implies the overhead
associated with creating the full MBSR matrix in storage. Even with this overhead, it is still
competitive with non-MBSR schemes.

2.11 Auxiliary Software

2.11.1 glib

GTK+ and specifically glib provide an excellent API for use by programmers when developing
applications to run in the UNIX environment. It is basically a standard developed for application
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Figure 2.31: Cache Blocking/MBSR Storage Comparison (Time): {3, r = 3, Uniform
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PAPI L2_TCM - Cache Blocking
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Figure 2.33: Solver Optimization Comparison : {3, » = 3, Adaptive
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Figure 2.35: Solver Optimization Comparison : {3, r = 4, Uniform
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Figure 2.36: Solver Optimization Comparison : f4, r = 4, Adaptive
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Table 2.10: Performance Case Key

Case | Description

000 | No reordering of elements, no special GS

313 | Reordering of Leaf elements, GS Cache Blocking on Leaf

41_3 | Reordering of Leaf elements - MBSR routines used on Leaf

44_3 | Reordering of Leaf elements - MBSR routines used on Leaf and NonLeaf

54_3 | Reordering of Leaf elements - MBSR routines used on Leaf and NonLeaf, GS

Cache Blocking on Leaf

Table 2.11: PAPI Hardware Counters

Counter Description
PAPI_TOT_CYC | CPU cycles
PAPI_FP_0PS | Floating Point Operations retired
PAPI_TOT_IIS | CPU instructions issued
PAPI_TOT_INS | CPU instructions retired
PAPI_RES_STL | CPU cycles resources stalled
PAPI L1 DCM | L1 Data Cache misses
PAPI_ 12 TCM | L2 Total Cache misses
PAPI_TLBDM | Translation Lookaside Buffer (TLB) Data misses
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development using the GNOME framework. Figures 2.41-2.43 illustrate standard glib objects used
throughout this thesis and referenced in Sections 2.3 and 2.5. For more information regarding this
library, see http://www.gtk.org/ and http://developer.gnome.org/arch/gtk/glib.html.

2.11.2 triangle

Triangleis a two-dimensional quality mesh generator and Delaunay triangulator written by Jonathan
Richard Shewchuk currently at the University of California at Berkeley. It allows one to in-
put the domain in a very easy fashion as a planar straight line graph. I link this package in
to produce all initial meshes. It is a quick, reliable, and quite flexible mesh generator which
produces quality quasiuniform meshes. For more information, see Shewchuk (1996) and http:
//www.cs.cmu.edu/ quake/triangle.html.

2.11.3 ATLAS

ATLAS provides optimized versions of BLAS, which can be used seamlessly with clapack routines.
These routines are used throughout the implementation of DG-FEM wherever BLAS operations
can be used, such as matrix-vector operations for projection and embedding and the coarse level
solve for multilevel solvers. For more information on ATLAS, see Whaley et al. (2001) and http:
//math-atlas.sourceforge.net/.

2.11.4 PAPI
Quoting the PAPI web page:

PAPI aims to provide the tool designer and application engineer with a consistent inter-
face and methodology for use of the performance counter hardware found in most major
microprocessors. PAPI enables software engineers to see, in near real time, the relation
between software performance and processor events.

Note that during the course of use of PAPI, when code was compiled with SSE2 extensions, i.e.,
vector operations on multiple doubles at one time, PAPI had some issues with producing accurate
floating point operation counts. The numbers here do not reflect attempts to have the compiler
optimize for vector operations and thus I feel they are representative of actual floating point counts.
For more information on PAPI, see Browne et al. (2000) and http://icl.cs.utk.edu/papi/.

2.11.5 R
Quoting from the R web page:

R is a language and environment for statistical computing and graphics. It is a GNU
project which is similar to the S language and environment which was developed at
Bell Laboratories (formerly AT&T, now Lucent Technologies) by John Chambers and
colleagues. R can be considered as a different implementation of S. There are some
important differences, but much code written for S runs unaltered under R.

R provides a wide variety of statistical (linear and nonlinear modeling, classical statistical
tests, time-series analysis, classification, clustering, ...) and graphical techniques, and is
highly extensible. The S language is often the vehicle of choice for research in statistical
methodology, and R provides an Open Source route to participation in that activity.
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typedef struct _GList GList;
struct _GList
{

gpointer data;

GList *next;

GList *prev;

};

Figure 2.41: GList Object Definition

typedef struct _GSList GSList;
struct _GSList
{
gpointer data;
GSList *next;
};

Figure 2.42: GSList Object Definition

typedef struct _GNode GNode;
struct _GNode
{

gpointer data;

GNode *next;

GNode *prev;

GNode *parent;

GNode *children;

Figure 2.43: GNode Object Definition
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All of the charts and graphs included in this dissertation were generated with R. I highly recommend
obtaining and learning to use R for anyone who has to process large amounts of data. For more
information on R, see http://www.r-project.org/.

2.11.6 meshtv/silo
Quoting from the Meshtv web page:

MeshTV is an interactive graphical analysis tool for visualizing and analyzing data on
two- and three-dimensional (2D, 3D) meshes. It is a general purpose tool that handles
many different mesh types, provides different ways of viewing the data, and is virtually
hardware/vendor independent while still providing graphics at the speed of the native
graphics hardware.

MeshTV utilizes the SILO database format, which implements an application program interface
expressly designed for accessing scientific data. The SILO library defines a set of objects for handling
different meshes and the SILO API can also be used outside of visualization for checkpoint and restart
file management. For more information on MeshTV and SILO, see http://www.1llnl.gov/bdiv/
meshtv/.

2.11.7 METIS
Quoting from the METIS web page,

METIS is a family of programs for partitioning unstructured graphs and hypergraphs
and computing fill-reducing orderings of sparse matrices. The underlying algorithms used
by METIS are based on the state-of-the-art multilevel paradigm that has been shown to
produce high quality results and scale to very large problems.

METIS is used to partition the domain into blocks for use in the Douglas cache blocking scheme. Note
that since METIS is already being used, migrating our implementation to a parallel version on large
clusters should be fairly straightforward. For more information on METIS, see Karypis and Kumar
(1998), Karypis and Kumar (1995) and http://glaros.dtc.umn.edu/gkhome/views/metis.

2.11.8 Miscellaneous

There were many other software packages which aided in the development and assembly of this
dissertation. Since code development was done on UNIX based machines, Perl was utilized to filter
through large datasets and aggregate summary data. In addition the gcc compiler systems coupled
with the gprof utility was useful in identifying bottlenecks by profiling time spent in each routine.
Maple was instrumental in validating derivation of basis functions and test problems.
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Chapter 3

Second Order Elliptic Problems

3.1 DG Formulation
3.1.1 Model Problem

The second order elliptic model problem under consideration is:

—Au=f in
u=gp on I'p (3.1)
Vu-n=gny only

where Q C R4, d =2,3 and 0Q =T =TI'p UT'y with n being the unit outward normal vector to I

Let 7;, = {K; : i« = 1,2,...,mp} be a family of star-like partitions of Q parameterized by
0 < h < 1. The elements of 7}, satisfy the minimal angle condition and 7}, is locally quasi-uniform.
Let the edges satisfy €1 = {e = 0K; N 0K, : pa—1(0K; N 0K;) > 0}, €8 = {e = 0K; N 9O :
pa—1(0K; N 9Q) > 0}. Note that Ve € EF, either e C I'p or e C I'y and & = EL U EB, where
EB =B UEL and EE NER = 0. Also note that if e € £7, then e = KT NIK~ for KT, K~ € Tj,.
Similarly if e € £8, then e = 0Kt N 0N = 0K N 99. Finally, nt is the unit normal to e that points
outward from K. Let the energy spaces Ej, be defined as

Ey= [ H*(K)

KeT,

and the finite element spaces V)" be defined as

V}f: H PT(K)

KeT,,

where P, (K) denotes the space of polynomials of total degree r — 1. Note that V;" C Ej, C L*(Q),
but V;" ¢ H'(Q).
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3.1.2 The DG Method
First obtain weak formulation by multiplying Eq 3.1 by v € V}/" and integrating over {2:

—/Q(Au)v dx:/va dx.

Next decompose integrals into element contributions and integrate by parts:

> —/K(Au)vdx: > /Kfvd:c

KeT, KeT,
Ju
Z Vu~Vvd:c—Z/ —vds:Z/fvd:c
KEeT, /K Kz, Jox On KeT, 'K

The next step is to split edge integrals:
o~ 2 Am ) 2 (5 2 () ()
Z a0 v = Z a0 + Z WA + Z , U + — U
KeTy <8TL 9K  ecrp on €  ecl'y on e ont e on e

resulting in:

% v (i), - Z (@), (o))

KeTy,
= Z (f7U)K+<9NaU>FN

KeT,

since gy is given.
There are several different ways of working with above internal edge integrals, here we present
two:

e D. Arnold (Arnold, 1982):

ac—bd:%(a—&—b)(c—d)—l—%(a—b)(c—l—d), (3.2)
implies
ou™t Ou- _ 1 [/0ut Ou~ _ 1 /0ut  Ou~ _
ot ot 25(377%77) i )+5(an—+‘an—+) (" +07)
_ Jou du (3.3)
~{ e+ 5]

= {Onu} [o] + {v} [Onu]

Ov
where 0,,v := " Vo, {0yu} |6 =

e G. Baker (Baker, 1977):

(8nu+ + anuf) }6, and [v]|e = (v+ — vf) }6.

N =

ac —bd = a(c—d) + (a — b)d. (3.4)
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implies

out L ou o out o fou] 0wt fou]
6n+v 8n+v _8n+v on v _8nv on v

(o [5]
= {Opu} ] + [Dnu] v~
where{du} |, = Opu’]_.

Note that for u € H?(Q), fluxes are continuous across interelement boundaries and

/ (0wt} [o] + {0} [Dner]) ds = / (Ou}[lds  (Arnold)
ec&l

ecg!

/ ({0t} [o] + (] v ds = / (O}l ds  (Baker).
ec&l

ec&!
Define
e B(u,v):= Z (Vu, Vo)
KeTy,
o F(v):= Y (fi0)x +{9n:V)py
KeTy,
o J(u,v) = (Onu,v)p, + Y ({Ou}, [v]),

ec&l

This leads to the weak formulation of Eq 3.1: Find u € H?(Q2) such that

B(u,v) — J(u,v) = F(v) Yv € E}, (3.6)

3.1.3 SIPG Formulation

One can now make some modifications in order to provide the bilinear form with certain desirable
properties, symmetry and coercivity. Noting J(v,u) = 0 for smooth u implies that for symmetry,

B(u,v) = J(u,v) = J(v,u) = F(v) — (9nv,9D)p,, -

For coercivity, one can penalize the jump terms. First define a penalization parameter o = o (v, he, ) >
0. Again noting that integrals involving a jump in u are zero for smooth u and that gp is given
data, then

I (u,0) =Y {olu],[o]), + (ou,v)p,

ec&l
which leads to

Problem (SIPG Formulation). Find v € H' N E), such that
B(u,v) = J(u,v) = J(v,u) + J? (u,v) = F(v) = (Onv,9D)p, + (09D, v)p, Vv € Ej. (3.7)

Thus
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Problem (DG Formulation). Find u] €V} such that
a) (u),v) = F(v), Yv e Vy (3.8)
where
Q0 = ¥ (T T X (U0 b, + (@) D, -0 (114D, ) (9)
KeTy, eEEIUEB

and

Fl(v) = Z (f,v)K — Z <gD,8nv—'yhe_lv>e+ Z (gn, ), - (3.10)

KeT, ecl'p eel'n
The bilinear form a (-, -) induces the following norm on Ej,:

1/2

loln={ Y IVold e+ > (h' Il +he HOn0},. ) (3.11)

KeT, ecEIUEE

Recall that we have been using two different forms for {anv}’e:

ov ov~
1. Arnold: {0,v}|, = (871* + 371—+> }
(%
2. Baker: {(%UH e
and of course [vHe = ’U+’8 - v"e.

3.1.4 Stiffness Matrix Assembly

Assembly of the stiffness matrix A requires subassembly of the diagonal blocks A;; and the off-
diagonal blocks A;j, i,j = 1,2,...,|7,|. Note that A; = A}, and A;; = AJTZ- implies that A = AT,
Thus, assembly of A requires subassembly of Ax,VK € 7;, and A.,Ve € £. Note here that since
each interior edge e is the common boundary between two triangles K, K, A, is the off-diagonal
block describing interaction between degrees of freedom of K and degrees of freedom of K~ through
edge e.

The first step is to rewrite Eq (3.9) into a form where individual components can be clearly
identified as being associated with either Ax or A.. Expanding the jump terms gives:

a)(u,v) = Z (Vu, Vo)g — Z <<{8nu},v+>€ + ({00} ,qu>6 —~ht <u+,v+>e)

KeT, ecETUEE

+ Z ( {Opu},v™ e <{8nv},u_>e +yh ! <u_,v_>e —~h! (u', v_>€ — bt (u, v+>e>
ec&l
(3.12)

A couple of notes regarding Eq (3.12). First, any terms mvolvmg both u™,v" or u=, v~ are part of
Ag+ or A, respectively. Second, any terms involving u™, v~ or w~,v™ are a part of A.. Third,
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Eq (3.12) takes different forms depending on whether the Arnold or Baker forms of {9, u} and {9,v}
are chosen. For the Baker formulation, Eq (3.12) becomes

CLZ(U, ’U) = Z (V’U,7 V’U)K - Z (<anu+7v+>e + <anv+7u+>e — fyhe—l <u+7u+>e)

KeTn ecETUEE

+ Z (<8nu+, v7>e + <8nv+,u7>e — 7h;1 <u+, v7>8 — yhgl <u7, v+>e> + Z yhgl <u7, v7>e
ecg! ecel
(3.13)

and for the Arnold formulation

1 1
a)(u,v) = Z (Vu,Vu)g — Z (5 (Oput vty + 3 (Onvt,ut) — yh! <u+,v+>e>

KeT, ecETUEE

+ Z (% <8nu+,vf>e + % <8nv+,u7>e — % <(’“)nu7,v+>e — % <8nv7,u+>e — yhgl <qu,1)7>8
ec&!

—yh; v+>e> + Z (% <8nu_,v_>€ + % <8nv_,u_>e +h! <u_,v_>e> (3.14)

ec&!

3.2 A Posteriori Error Estimation

A posteriori error estimators are used to determine regions where refinement and coarsening should
be done under an adaptive FEM framework. The residual type a posteriori estimator is the same
as the one described in Karakashian and Pascal (2004, 2006, Theorem 3.1). The local problem type
a posteriori estimator is the same as the one the one described in Karakashian and Pascal (2003,
84.1), including explicit calculation of the local problem right hand side for both the Arnold and
Baker SIPG formulation.

3.2.1 Residual A Posteriori Estimator

The following residual type a posteriori estimator theorem is used as our residual estimator and is
stated without proof.

Theorem 3.2.1 (Karakashian and Pascal (2004, 2006, Theorem 3.1)). Let e = u—u). Then

S0 Vel <o S0 WS+ Auflle+ 3 helldwa)E+ S helgn — O

=n KeT, cce! ccel

92 3 R+ b gn — ).

ec&l ecE

Note that the constant c is a constant depending only on 7 and the minimum angle 6 of the
triangles in the initial triangulation.
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3.2.2 Local A Posteriori Estimator

The approach here follows that of Karakashian and Pascal (2003, §41.1) and is based on domain
decomposition ideas contained in Feng and Karakashian (2001). Basically we view the computed
solution ] as a ”coarse-mesh” approximation to some function in a higher dimensional subspace
which is arguably a more accurate approximation to the solution u. We do not compute this more
accurate approximation directly, but attempt to approximate it by adding to u; a function computed
as the solution of “local” problems. These local problems are formulated in a higher dimensional
space on each triangle K € 7, obtained through either h or p refinement.

Define the finite element space V' := V}/ ' consisting of discontinuous piecewise polynomial func-
tions of degree less than or equal to ' — 1 where ' > r. Note that V}/ is a subspace of V’. On

V' x V' we define the bilinear form a’ := aZ:, where a; is the restriction of a’ to V;" in the sense that
a)(v,w) —ad'(v,w)  Yo,w e V. (3.15)

For each K € 7T, we consider the “local” space V/(K) obtained by restricting V' to K. By extending
the elements of V/(K) by zero to the rest of Q, V/(K) becomes a subspace of V'. On V'(K) x V'(K)
introduce the bilinear form a'y(-,-) as the restriction of a/(-,-) to V/(K) x V/(K). Note that ay
inherits the symmetry and coercivity of a’ on V’/(K).

Now let v’ := uZ; be the discontinuous Galerkin approximation of u in the space V, i.e.,

a'(u',v) = (f,v) — Z (9p,0nv — 'yhe_lv>8 + Z (gn,v), Yo eV, (3.16)

ecl'p ecl'y
Noting the orthogonality relation:
dW —ul,v)=0 YveV,

allows us to pose the local problems to be solved for the functions {nx € V'(K)|K € T} as:

dic(nic,0) = (fiv) = Y (g, Onv = b o)+ Y7 g, v), —d'(uj,0) Vo e VI(K). (3.17)
ecdK e€cOK
ecth ecER

Before getting started, note the integration by parts formula for a single element K

(Vu, Vo)g = (—Au,v) g + Z (Onu,v), + Z (Onu,v),

ecOK ecOK
ecER ecEl
+ ) (Out oty = > (Guum,vT), . (3.18)
ecOK ecOK
ec&! ec&l
K=K%t K=K~
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Then
ag (nxk,v) = (f,v)kx — Z (9D, Onv —yhto) + Z (gn,v), —a'(u],v)

ecOK ecOK

e€ER ecel
=(fiv)k — Z (9D; Opv — yh'v) + Z (gn,v),

ecdK ecOK

ecEl ecER

— (V. Vo) = D7 ({0}, [o]), + ({0nv}, [wi]), — vt (1)), [0]),)
eeeglaég
(3.19)

Substituting Eq 3.18 into Eq 3.19 gives

ax (i, v) = (f + Au),v) i + Z — 9D, 00 —yh; ')+ Z (9N — Opuy,v),
e€OK e€cOK
ecEh ecER
+ Y ({onup}, [0, + (), {Onv} — vhC M o]),)
ecOK
ecel
_ Z <5nu+,v+>e 4 Z <6nu7,1)7>8. (3.20)
ecOK e€OK
ece! ece!
K=K7t K=K~
For the Baker formulation, Eq 3.20 becomes
aIK(nKv ) (f+Auh7 K+ Z gDv8 U—’yh > + Z <gN _anu27v>e
ecOK e€OK
ecEh ecER
+ 3 ((On )™ 1) + (i), 0wt =R ), )
e€cOK ¢
ecel!
- Z <8nu+,v+>e+ Z <8nu_,v_>e
eCOK ecOK
ece! ece!
K=K%t K=K~
= (f+Au),v)k + Z —gp, Onv — yht > + Z (9N — Opuy,v),
ecOK ecOK
ectB ecER
+ Z ([u]], Opv™ —vhT W)+ Z ([l vhs ™), = ([Oau)]v7),) -
eCOK ecOK
ece! ece!
K=K* K=K~

(3.21)
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For the Arnold formulation, Eq 3.20 becomes

ax(ng,v) = (f + Au),v)k + Z (u) = gp, Onv — yh 'v)_+ Z (9N — Onuy, v),

ecOK e€cOK
ecEf ecER
1 _ 1 _ _
+ Z <<§ ((w)t+ (u))7) ,[U]> + <[uZ], 3 (Onvt + 0pv™) — vk 1[v]> )
eCOK e e
ecel
— Z <(’“)nu+,v+>e + Z <(’“)nu7,v >e
ecOK ecOK
ec&! ecel
K=K7* K=K~
=(f+Au),0)k+ > (ul —gp, 0w —vh'v) + Y (gn — Opu],v),
ecOK e€cOK
ecEf ecER
1 _ 1
b3 (i gon ) L),
ecdK e
ecel
K=Kt
1 _ 1 1 o
+ Z [uh],§6nv +~h. v ~5 ([Onup),v™), )
eCOK e
ecel
K=K~

(3.22)

3.3 Estimator Performance

3.3.1 Effectivity Index Comparison: Arnold vs. Baker

Figures 3.1-3.9 show |e||, || Vel|, and ||e]|1, for functions £3, 4, and £6 under full refinement through
7 levels. Figures 3.10-3.15 show effectivity indices for the same set of runs.
For the residual estimator, the effectivity index 7 is calculated as

2 52 ( )
e S 3.23
llellF
where
€= > BElf+ A%+ D hellonu]]2+ Y helgn — Onul|?
KeTy, ec&! ecEl
+ R WZ A ke gp — w2
ec&l ecEl

For the local problem estimator, the effectivity index 77 is calculated as

1/2
= nll where 7= ( Z ni) . (3.24)

= el P
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Note that in both cases, the following energy norm is used, which differs from Eq 3.11 in that ~
influence is included:

1/2

o= 3 IVeldi+ S (bl +helf0a0}E,) | - (3.25)

KeT, ecETUES

Some observations on the error norm graphs. First note that for the oscillatory test problem (f4),
there is some initial bad behavior. This is due to the fact that the initial mesh was too coarse to
obtain accurate approximations. As the mesh becomes more refined, this bad behavior is eliminated
and one ends up with the predicted a priori error norm reductions. Second, the poor behavior
for high degree polynomials on highly refined meshes is not yet clearly understood. For h — h/2
uniformly in a mesh with elements of degree p, one expects that

1\**
= wplie = (5) lu-wli

P
o o=l ~ (5) =l
As one can see in the following graphs, this is indeed the case for the smooth functions (f3, {4), but
not necessarily the case for the point singularity problem (f6).
Some observations on the effectivity indices. The effectivity indices show good behavior in that
they are generally close to 1, indicating that the estimator predicts the error fairly well. There also
seems to be some dependence on r.

3.3.2 Adaptive Performance Comparison: Arnold vs. Baker

The following figures provide insight into how the adaptive methods perform for various problems.
The reduction in energy norm for f3, f4, and {6 are given followed by the adaptive meshes produced
for each r = 2,3,4. As one can see, the number of adaptive iterations required to reach the adaptive
tolerance is very good.

Some observations on the meshes. For the residual estimator, Arnold and Baker formulations
give very similar meshes. For the local estimator, Arnold and Baker formulations give different
meshes, but move towards better agreement with the residual estimator and with each other as the
polynomial degree r — 1 increases.

One should note though that quality of the mesh picture does not necessarily imply anything
about how well the error estimators performed. Note that there appears to be differences between
the local estimator and the residual estimator for r = 2,3, yet this difference seems to not be as
obvious for 7 = 4. To obtain a better picture of the local estimator, it would be worthwhile to do
both h and p refinement of the V' subspace, which might provide even better results.

Table 3.1 illustrates the critical parameters used in generating these meshes. Note that for
each set of problem meshes by r for problems f3,f4, and f6 the error in the H! seminorm ||Ve||
are approximately the same. We could not do this for problem {7 since we do not have the exact
solution, and so these meshes are provided just to illustrate refinement behavior near the corners.
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Table 3.1: E112 Adaptive Runs

run y €adapt dof vertices tri alter | Lvl Vel Figure
f3d1AR_A | 5 0.088 29046 5085 9682 5 5 0.040404 3.17(a)
f3d1ARB | 10 0.0942 32718 5746 10906 5 5 0.040424 3.17(b)
f3d1AL_A 5 0.0332 29262 5468 9754 5 5 0.0404795 3.17(c)
f3d1AL B | 10 0.0393 67998 16557 22666 8 7 0.0404051 3.17(d)
f3d2AR_A | 4 0.001655 50496 4543 8416 5 5 0.00051552 | 3.19(a)
f3d2AR B | 7 0.001668 53394 4946 8899 5 5 0.000515721 | 3.19(b)
f3d2AL_A | 4 | 0.0002454 | 55878 5253 9313 6 5 0.000515185 | 3.19(c)
f3d2AL B | 7 0.000221 64698 6192 10783 6 5 0.000515457 | 3.19(d)
f3d3AR_A | 4 1.93e-05 98140 5299 9814 5 5 3.51251e-06 | 3.21(a)
f3d3AR B | 6 1.985e-05 | 102220 5715 10222 5 5 3.51317e-06 | 3.21(b)
f3d3AL_A | 4 2.794e-06 | 101260 5607 10126 5 5 3.5146e-06 3.21(c)
f3d3AL_B 6 2.21e-06 108850 6506 10885 5 5 3.5185e-06 3.21(d)
f4d1AR.A | 6 4.42 42258 7875 14086 6 5 2.07931 3.23(a)
f4d1ARB | 10 4.848 46353 8225 15451 6 5 2.08712 3.23(b)
f4d1AL.A | 6 1.493 40044 7435 13348 6 6 2.07948 3.23(c)
f4d1AL B | 10 2.2 102171 23453 34057 10 7 2.07492 3.23(d)
f4d2AR_A | 4 0.518 75804 7003 12634 5 5 0.156587 3.25(a)
f4d2AR B | 7 0.534 77352 7101 12892 5 5 0.156213 3.25(b)
f4d2AL_A | 4 0.09111 78234 7380 13039 6 6 0.157095 3.25(c)
f4d2AL B | 7 0.091 86082 8026 14347 6 6 0.156146 3.25(d)
f4d3AR_A | 4 0.0764 99250 5775 9925 5 5 0.0146416 3.27(a)
f4d3AR B | 6 0.07896 103300 6185 10330 5 5 0.0146036 3.27(b)
f4d3AL_A | 4 0.01095 100720 5989 10072 5 5 0.0147155 3.27(c)
f4d3ALB | 6 0.009 107230 6603 10723 5 5 0.0147023 3.27(d)
f6d1AR_A | 7 0.0184 19062 3394 6354 9 9 0.00938087 | 3.29(a)
f6d1AR_B | 10 0.0206 25182 4597 8394 9 9 0.00933783 | 3.29(b)
f6d1AL_A | 7 0.00838 24471 4606 8157 8 8 0.00930545 | 3.29(c)
f6d1AL B | 10 0.00902 43416 9879 14472 12 11 0.00932394 | 3.29(d)
f6d2AR_A | 6 0.00117 34596 3370 5766 14 14 | 0.000349636 | 3.31(a)
f6d2ARB | 7 0.00122 42984 4029 7164 14 13 | 0.000347114 | 3.31(b)
f6d2AL_A | 6 0.00019 35478 3306 5913 13 13 | 0.000347442 | 3.31(c)
f6d2ALB | 7 0.0002 37998 3779 6333 15 13 | 0.000348594 | 3.31(d)
f6d3AR_A | 5 0.000154 30120 1786 3012 18 18 | 2.98224e-05 | 3.33(a)
f6d3ARB | 6 0.00016 32610 1917 3261 18 17 2.9442e-05 3.33(b)
f6d3AL_A 5 1.815e-05 47700 2722 4770 17 16 | 2.99311e-05 | 3.33(c)
f6d3ALB | 6 1.717e-05 | 33480 1916 3348 18 17 | 2.77807e-05 | 3.33(d)
f7Td1AR_A | 7 0.02 23952 4182 7984 7 7 - 3.34(a)
f7Td1ARB | 10 0.02 39135 6966 13045 7 7 - 3.34(b)
frTd1AL.A | 7 0.009 23196 4129 7732 7 7 - 3.34(c)
f7Td1AL B | 10 0.009 82938 18032 27646 10 10 - 3.34(d)
fTd2AR_A | 6 0.002 15360 1520 2560 9 8 - 3.35(a)
f7Td2AR B | 7 0.002 12102 1170 2017 8 8 - 3.35(Db)
f7Td2AL_ A | 6 0.0005 11724 1139 1954 9 8 - 3.35(c)
f7Td2AL_B 7 0.0005 10860 1112 1810 9 8 - 3.35(d)
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Table 3.1, continued

run Y | €adapt dof | vertices | tri | alter | Lvl | ||Ve| | Figure
f7Td3AR_A | 5 | 0.0002 | 14470 883 1447 11 11 - 3.36(a)
f7Td3AR_B | 6 | 0.0002 | 16360 998 1636 11 11 - 3.36(b)
f7Td3AL_A | 5 | 5e-05 | 10120 615 1012 11 10 - 3.36(c)
f7Td3AL_B | 6 | 5e-05 | 10030 610 1003 11 10 - 3.36(d)

Note also that for the local problem estimator, 7k is determined on each element. The estimator
then used as a refinement indicator is | Vn||. The apparent chopiness in the meshes for the Baker
formulation of the local estimator appear to be related to the fact that our estimator is not including
edge effects but rather is based soley on the gradient of the local problem solution . Finally, note
also that the refinement level for singularity problems f6 and {7 in general increases with degree, i.e.,
the mesh hierarchy gets deeper.

3.4 Penalty Term Study

One of the most cited difficulties with using DG SIPG methods is choosing a good value for the
penalty parameter . It appears that using the Arnold formulation does a better job in predicting
the error, improving with increasing r. Ideally, one would hope to be able to have a set of heuristic
rules which would allow one to efficiently choose the value of  for a particular problem. One should
keep in mind that the theory only requires that v be large enough to ensure coercivity of the bilinear
form. For very large values of «, the global stiffness matrix condition deteriorates and thus it is
important to choose 7 correctly. Finally, it should be noted that ~ influence appears as v.(r — 1)
in the bilinear form and appears as v2(r — 1)* in the a posteriori residual based estimator, where 7,
is constant. This dependence of v on r was shown in Karakashian and Pascal (2003).

3.4.1 Arnold and Baker Formulation: Error Norms

A comparison of Arnold and Baker formulations of ||Ve|| for test problems £3,f4, and f6 while varying
the penalty term + is shown in Figures 3.37-3.42. One important point to note here is that for large
7, the Arnold and Baker formulations converge to the same ||Ve||, which by theory should also be
the same ||Ve|| for the continuous Galerkin FEM formulation. Another point that needs to be made
is that there exists a v for which the minimum of ||Ve|| is obtained and this v is different for the
Arnold and Baker formulations when working with the same problem and r.

3.4.2 Effectivity Indices

Effectivity indices for test problems 3, f4, f6 using both the Arnold and Baker formulations with
the residual based estimator while varying the penalty term « are compared in Figures 3.43— 3.54.
As one can see, there is variation of the effectivity indices with 7, which implies that the efficiency
of the estimator can vary. However, this variation is not so much that reasonable results cannot be
obtained when using ~ in a fairly wide range.
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Chapter 4

Biharmonic Problems

4.1 DG Formulation
4.1.1 Model Problem

The fourth order elliptic model problem under consideration is:

Ay =f in 0
U =gp onT (MP)
Vu-n=gy onl

where Q C R%, d = 2,3 and 09 =T’ with n being the unit outward normal vector to I'.
Let the energy spaces Ej be defined as

By = ] BYK)

KeT,

and the finite element spaces V) be defined as

V}f: H P’I‘(K)

KeT,,
where P, (K) denotes the space of polynomials of total degree r — 1. Note that V;" C Ej, C L*(Q),
but Vi’ ¢ H2(Q) and V' ¢ HY(9).

4.1.2 SIPG Formulation
After working through the details (to be included in dissertation), the SIPG problem is:

Problem (Fourth Order Elliptic Weak Formulation). Find u) €V} such that

0 (u,v) = Fj(v),  WoeVy (4.1)
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oyt (0] [0, v (), [v]>e) (12)

and

Flw) =Y (f0)x+ Y (9D, 0a(A0) +vh7%0), + (gn, vhe ' 0pv — Av),) (4.3)

KeTy, ecl

The bilinear form a] (-, -) induces the following norms on Ej:

1/2
o]z, = (Z 1800+ 3 (e °I0lf3.e + 02 |[anv]|§,e+he|{Av}|3,e+h2|{an<Av>}|§,e)>

KeTy, ec&
(4.4)
and
1/2
ol = ( S IVl + 3 (e el + e |{anv}|oe)> (45)
KeTy, ecf

There are two different forms for {anv}|€:

N _
1. Arnold: {3nv}‘e =: (SZ—+ + ((;:L—"') ‘
(%

2. Baker: {3nv}| -
on

e

and of course [vHe = v+|e — v_|e.

4.1.3 Stiffness Matrix Assembly

Assembly of the stiffness matrix A requires subassembly of the diagonal blocks A;; and the off-
diagonal blocks A;j, i, = 1,2,...,|Ts|. Note that A; = Al and A;; = A;ri implies that A = AT,
Thus, assembly of A requires subassembly of Ay, VK € T, and A.,Ve € £7. Note here that since
each interior edge e is the common boundary between two triangles K+, K~ A, is the off-diagonal
block describing interaction between degrees of freedom of K+ and degrees of freedom of K~ through
edge e.

The first step is to rewrite Eq (4.2) into a form where individual components can be clearly
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identified as being associated with either Ax or A.. Expanding the jump terms gives:

aj(u,v) = Y (Au,Av)g + Y (({an(m)} ) — ({Av}, 0,ut), + ({0a(Auw)} v,

KeTy, ecé&

- ({Au},0,0") + yh 't (Oput, Opv't), + yh? (ut, ’U+>e)

— Z (<{8n(Av)} , u_>e — ({Av} 76nu_>e + ({0n(Au)}, v_>e — {{Au}, 6nv_>e

ec&!

+ Rt <3nu*, 8nv+>e +yh3 <u*, v+>e + Rt <8nu+, 8nv7>6 +yh3 <u+, v>e)

+ Z (71161 (Onu™,0nv™ ) +yh® (u™, v>e) (4.6)

ecg!

A couple of notes regarding Eq (4.6). First, any terms involving both u*,v™ or u~,v™ are part of
A+ or Ag—, respectively. Second, any terms involving u™, v~ or u~,v" are a part of A.. Third,
Eq (4.6) takes different forms depending on whether the Arnold or Baker forms of {9,u} and {9,v}
are chosen. For the Baker formulation, Eq (4.6) becomes

a)(u,0) = Y (Au, Av) + ) ((an(AU+),u+>e — (A0t 0ut) + (O (Aut), 0

KeTy, ec&

— <Au+, an+>e + vhe_l <8nu+, an+>e + vhe_g <u+, v+>e>

e <AU+’ a77"07>e

=5 (O aa), — (80 ), + (o))
+yhgt (Onu, 0pv )+ yh P (um vt bt (Oput, 000 7) + yh P (ut v>e)

+ Z (7116_1 (Onu™,0nv™ ) +vh® (u™, v_>e) (4.7)

ee&!
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and for the Arnold formulation

1 1 1
a)(u,v) = K; (Au, Av)g + ; (5 (On(AvT),ut) — 3 (Av*, 9,u™) + 3 (On(Aut), vt
h €

— % <Au+, an+>e + yhgl <8nu+, an+>e + vhj’ <u+, v+>e>

-y (% (On(Au),u7), = 5 (AT, 0u), + 3 (On(Bu),07), — 2 (Aut,0,07),
ec&!

- % (On(Av7),ut) + % (Av™, 0,ut) — % (On(Au™),07) 4+ = (Au™,0,07),

+ 7hg1 <8nu7, (?nv+>e + "yhgg <u7, v+>e + 7hg1 <8nu+, 8nv7>e + "yhgg <u+, v>e)

+ Z (% <3n(Av7),u7>e -

ecg!

4.2 A Posteriori Error Estimation

4.2.1 Local A Posteriori Estimator

The setup for the local problem is exactly the same as in § 3.2.2, with appropriate changes to the
bilinear form. Implementation and comparisons will be included in the final draft of this dissertation.
Again, first noting the integration by parts formula for a single element K

(A%u,v) g = (A(Au),v) K
= —(V(Au), Vu) g + (OnAu,v) 5
= (Au, Av)g — (Au, 0pv) g + (OnAu,v) ¢

implies
(Au, Av) g = (A%u,v)k + (Au, Iv) g — (On AU, V) g -
Therefore

(Au, Av)g = (A%u,v)k + Y ((Au,0pv), — (OpAu,v),)

e€cOK

eceP
+ Z (<Au+,8nv+>e — <8nAu+,v+>e) — Z (<Au_,8nv_>e — <8nAu_,v_>e) . (4.9)
ecOK ecOK
ece! ece!
K=K%t K=K~
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Now the local problem is

a(nic,v) = (f,v)K — Z ({gp, OnAv + 7h;30>e + {gn,vh: ' Opv — Av) ) —d'(uy,v)
e€OK
ecEB

or

ayx (i, v) = (f,v)x — Z (<gD, OnAv + ’yhg3v>e + <gN,”yh;18nv — Av>e)

e€OK

eceP

— (A, Av)k + > (([up], {onAv}), — ([Onu]] {A0}),
ecOK
ecé

+ {0 dug}, [v]), — ({Aug}, [0n0]), +vhe ([Bnug], [0n]), + vk ([up), [W]),)]. (4.10)

Substituting Eq 4.9 into Eq 4.10 gives

ay(ni,v) = (f — Azuz,v);{ + Z (<gD - uZ, OnAv + 7hg3v>e + <gN - 3nuz,”yh;18nv - Av>e)

eCOK
eceB
=Y (AGD 0T, — (@A) + Y (AR 07), — (Bl 07),)
=Y ( W1 AB DY), — ([0u] AAD), + (Budul}, [o]), — ({Au]}, [Ba0]),
e€OK
ece!

oyt (O] 9, + v (), [v1>e)- (4.11)

For the Baker formulation, Eq 4.11 becomes

ay (i, v) = (f — A%u),v) K + Z ({gp —u},0nAv + vh;3v>€ +{gn — Opu),vh. ' Opv — Av>e)

e€OK
eceB
+ Z [Onu)], AvT —yh 'O t) | = ([u])], O AvT + 4k 20T )
e€OK
ece!
K=KT*
+ Z [0nu]] — [Au)], 0p0™ ) + ([0nAu]] —|—7he_3[uZ],v_>e).
e€OK
ece!
K=K~

(4.12)
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For the Arnold formulation, Eq 4.11 becomes

a(nic,v) = (f — A2uz,v)K + Z (<gD —u), 0 Av + vhe_30>e + <gN — (%uz,vhe_lanv — Av>8)

ecOK
ece®B
1
+ ¥ (G-l o) - (nconi) + glaufl .0 )
ecOK e e
ece!
K=K7*

([Bnul], AT, —%([UZ]ﬁnAWL)
D> (< 0] +9h (i), ) + (9h o] = 5lAu71 0,0 )

ecOK
ece!
K=K~

l\D|P—‘

([Onup], Av™) — % <[uZ],6nAv_>e).

l\D|P—‘

(4.13)

4.3 Estimator Performance

4.3.1 Effectivity Index Comparison: Arnold vs. Baker

Figures 4.1-4.3 show ||e||2,; for functions {2, {3, and f4 under full refinement through 5 levels.
Figures 4.4-4.6 show effectivity indices for the same set of runs. We utilize a heuristic residual-
based type estimator, the effectivity index 7 is calculated as

2 &
A - (4.14)
P el

where

= > hlf = 2%l + Y (v h 0w 2+

KeT, ec&!
VP2 + hel[Au]|2 + b2 [0, Au]]|2)

+ ) (P gn — w2+ lgp — ull?).

ecEB
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4.3.2 Adaptive Performance Comparison: Arnold vs. Baker

The following figures provide examples of adaptive meshes for some test problems. Table 4.1 illus-
trates the critical parameters used in generating these meshes.

Table 4.1: E114 Adaptive Runs

run 0% €adapt dof vertices tri alter | Lvl | Figure
f2d2AR_A | 6 | 0.00975 | 27078 2586 4513 12 5 4.7(a)
f2d2ARB | 6 0.01 26826 2505 4471 11 5 4.7(b)
f2d3AR_A | 6 | 0.0017 | 26440 1699 2644 11 4 4.8(a)
f2d3AR_B | 6 | 0.0017 | 26860 1685 2686 10 4 4.8(b)
f2d4AR_A | 6 | 0.00012 | 25530 1041 1702 13 4 4.9(a)
f2d4AR_B | 6 | 0.00012 | 26115 1040 1741 13 4 4.9(b)
f3d2AR_A | 6 2.25 26484 2388 4414 13 5 4.10(a)
f3d2ARB | 6 2.35 26124 2365 4354 13 5 4.10(b)
f3d3AR_A | 6 0.48 25090 1639 2509 10 4 4.11(a)
f3d3ARB | 6 0.48 25180 1639 2518 10 4 4.11(b)
f3d4AR_A | 6 0.037 26295 981 1753 13 4 4.12(a)
f3d4ARB | 6 0.037 26070 957 1738 12 4 4.12(b)
fAd2AR_A | 6 9.2 24918 2205 4153 13 5 4.13(a)
fAd2ARB | 6 9.2 27960 2575 4660 13 5 4.13(b)
f4d3AR_A | 6 1.75 26740 1697 2674 9 4 4.14(a)
fAd3ARB | 6 1.75 26920 1705 2692 9 4 4.14(b)
fAd4AR_A | 5 0.154 24405 920 1627 13 4 4.15(a)
f4d4ARB | 6 0.154 24405 904 1627 12 4 4.15(b)
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Chapter 5

Summary and Future Directions

This research has illustrated that the use of the DG method in an adaptive FEM environment
has many attractive features from both a theoretical and computational point of view. The fact
that there are no continuity constraints as those that exist in standard continuous Galerkin FEM
approximations implies that one has great flexibility in how the individual elements are refined. This
feature of DG has great potential for the future, from “drastic cutting” of an element more than one
time per adaptive iteration to scalability and parallelization of the algorithms to solve really large
problems on massively parallel clusters. While DG implementation requires one to solve for a larger
number of unknowns than continuous Galerkin FEMs, it is felt that the performance improvements
illustrated here and carried further, especially in the implementation and choice of solver will more
than make up for the presence of these extra unknowns.

This research effort has often created more work to be done than could reasonably be achieved
in the time frame to complete the dissertation, and thus there is plenty work to be tackled in the
future. For example, in the adaptive mesh management there are still issues to be solved in adjusting
inter hierarchy boundary levels based on how the adaptive problem’s level storage requirements are
changing. This would make the adaptive mesh management implementation even more powerful. In
addition, extending the use of cache optimization to integrate more fully with the hierarchy mesh
tree would also be of excellent value. The gains obtained from utilizing a modified block sparse row
data format for operations on the related matrices and vectors should be pursued and more tightly
integrated with the work being done with the Optimized Sparse Kernel Interface project (Vuduc
et al., 2005).

We would like to extend the software developed here into a more flexible and useful tool for
researchers. Included in this effort will be to extend the simple model problems to include advection
terms as well as to be able to handle variable coefficient problems. An effort will be made to package
the software developed here to make it “useable” for other researchers, i.e., automate selection of
solver, optimization efforts, etc. Finally, we would also like to include nonlinear solvers in the
software.

Determining an “optimal” choice for the penalty parameter v under various PDE problem scenar-
ios is definitely a goal for future work. In addition, developing sharp a posteriori estimates utilizing
modifications of either the residual or local problem estimator is important to look at also, including
local problem extension to increasing the local problem subspace to include both h and p refinement.
Another area of future work is to work with the solution to the local problems as a “correction”
to the solution; this aspect perhaps could be exploited and utilized in the solver implementation,
specifically Multigrid.
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We plan on pursuing extension of these methods to time dependent problems, such as the heat
equations and the Cahn-Hilliard equations (Cahn and Hilliard, 1958; Feng and Karakashian, 2006).
In addition, providing a more formal comparison between other current state of the art FEM imple-
mentations such as the excellent program PLTMG (Bank, 1998) and FEM toolbox ALBERT (Schmidt
and Siebert, 2005) is also on the agenda for the future.

In conclusion, this research has provided me the best opportunity I could have asked for; taking
what is the really beautiful mathematical theory of DG-FEM, applying fast and efficient state of the
art algorithms, utilizing current existing state of the art software, all resulting in computer software
that can be reused in the future to explore these methods even further.
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Appendix A

E112 Stiffness Matrix Assembly

Detail

Diagonal Blocks: Dirichlet term.

Assume that on K the following functions are defined

u(x) = 3 u(x)ok (x

N
Jj=1

and

where N is the number of degrees of freedom and for convenience we will drop the superscript K

annotation unless otherwise needed. Then
(Vu(x), Vu(x)) x = / Vu(x) - Vo(x) dx
K

] =

5,J=1

:MZ

3,7=1

WE

%,J

Il
-
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u(x) /K Vo, -V dx

K 9¢; 0¢i
u(x; )/K (6—5676_56 +

(V;, Vi) e ux) = D (V;, Vi) o ol

99; 09i
dy 31/) o

N

ij=1



N

where {aK ", are the unknowns (dofs) for triangle K. Applying change of variable transformations

for quadrature over the reference element K implies

d¢; 0¢;  0p; 0 1 9¢; oo, 00 i . O
8—; pe + 8; ay 7(2|K|)2 [( 83 1+ 836&21) <8A a1 + B a21> +

(G Gam ) (o + S|

Thus, with N, being the number of quadrature points for a chosen quadrature rule and evaluating
each partial derivative at quadrature points ¢, ¢ = 1, ..., N, with quadrature weight %,

N, - .
(V;, Vi), = <ﬁ> { 2|K1) qu[<8%fb11+%¢3A ) <%&11+%d21>

+ <%¢A] 12 + %(bf d22> ((?ff (12 + %dn)] }
q
or

N . R
1 Sy a 09, . 99 . 99 .
(V%AV@)K = m{;w l( 83 11+ 83 a21> <%a11 + 8—3)a21>

+ <%Q;J A12+ i)dij ( ) <%§i&12+ %21d22>] }
q

N

A i= (V05,96 ) (A1)

i,j=1

Note that

is a symmetric matrix and is the Dirichlet portion of the diagonal block matrix Agk.

Diagonal Blocks: Flux terms.

Associated with each interior edge e € £ are two triangles, (K+, K ). The edge integrals which con-
tribute to the diagonal blocks relating to fluxes are (9, u™,v™")., <8nv ut)e for K+ and (9,u™, v )e,
(Opv~,u” ) for K~ where n is the unit outward normal to K.
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First consider the term (9,v", u™),:

Applying quadrature rule implies that

0¢; . 99, . 0 09
¢ j,3n¢>+ . = 2|K|qu{ [(aua—q;—i-am a§>nm+< aiz ;; + a2z (;Z)ny‘|} .
q

Now consider the term (G,u™, vT)e:

<(9nu+ +>
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Applying the appropriate edge quadrature rule implies that

<<Z5 = 2|K|Z { i l(au%qé + 21%?)%4— (%2%4—%2%) nyl} .
q

Note that similar formulae exist for the terms (Opu™, v )¢, (Opv ™, u™ )e.
For the Baker formulation (Eq. 3.13)

N
Az = ( > ((6f ans), + <¢:,an¢;>e)> (A.2)
ecOK i,j=1
K=K7*
eccfues

is a symmetric matrix and contributes to the Fluz portion of the diagonal block matrix Ag. For the
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Arnold formulation (Eq. 3.14)

N
o= (3 (et 460,
e€cOK

oot 3,j=1
ec&!

N
¥ ( > ((65.0u0t), + <o>i+,an¢;>e)>
e€OK

1,j=1

(A.3)

K=K+t
ectB

and
1 N
Aga = ( > 3 (<¢j,6n¢i>e+<¢i,an¢j>e)> (A.4)
e€COK ij=1
both contribute to Ag.

Diagonal Blocks: Penalty terms.

Penalty terms vh, ' (ut,v "), and yh_ 1 {(u~, v~ ), also contribute to the formulation of the diagonal
block Ag. Following a similar path to what was done in the previous section

N
vhe Nt o) = yht D af (o 6 )e

i,j=1
with
Nq
< jv j>e = he wq[¢j¢1]q
q=1
implies
Nq
Y NG b e =7 Y gl dil,-
q=1

Y5, 67 )e =7 Y tgldsdily-
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Therefore, the penalty contributions to Agx can be represented as

N
Afe s ¢=( 7t },@*}e) (A.5)

e€OK i,j=1

K=Kt
ecgluel

and

Ak 3 ¢=( > 7h21<¢j,¢i>e)N (A.6)

e€OK =1

Diagonal Block Assembly.

For the Baker formulation, K~ contributions to Ax only occur through the penalty terms A;(,3~
For the Arnold formulation, contributions to Ak involve the flux terms Ay , and the penalty terms
A}yg. Since DG allows the presence of hanging nodes, special care must be taken with respect to
accumulation of Ax components due to K~ contributions. In the case where a hanging node is
present along an edge e € 0K and K = K™, then Ay 5 terms will accumulate in Ax from all (up
to two) triangles adjacent to K along e

For each interior edge e € 0K define a hanging node edge weight o&

e

w1 Lul(K) < Loi(K-)
7 T \2 Lu(Kt) > Lul(K).

Therefore, Ay 5 can be rewritten to take hanging nodes into account as

N
Ak 3 ?=( Z 057h21<¢;,¢;>e> (A7)
ecOK i,5=1
K=K~
ecel

Note that we assume here that if K = K~ and along edge e € K there are two neighboring
triangles (i.e., edge e is split into two edges e, es), then both neighboring triangles K., , K., are

both considered to be K, K[ relative to ey, ey respectively.

Then for all K € 7T}, assembly of A can be described for the Baker formulation as
Ax = A1 — Ak + A};’g + Ak 3 (A.8)
and for the Arnold formulation as

Ag = Ay — A, + Ag s + Ak s+ Ak s (A.9)
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Off-Diagonal Blocks: Flux Mix Terms.

The edge integrals which contribute to the off-diagonal blocks relating to fluxes are (9,u™,v™),,
(Opv T, u™)e, (Opu™,v 1), and (Opv~,u™),, which describe the mizing of fluxes through edge e.

Now consider the term (G,u™,v™):

Applying quadrature rule implies that

(0nd], 07 ),

 he 5. 0y . 09, 09, 09; .
= oK Wq [(all 95 + a21 B Ng + | Q12 9% + G2 29 ny| é; o
q

q=1

2

Now for the term (9,u™,v"),

/\

v <Vu 71§:¢+>

€

N
<Z 04] n¢;v¢j>

i=1 \j=1

N
e
N

=Y a; (s, 07 ), -

4,j=1

Applying quadrature rule implies that

(Onj 07 ).
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Now consider the term (9,v",u™):

=1 e
N
=D 05 <Zan r,¢;>
j=1 i=1 e
N
= > a5 (0n0],07),
i,j=1

Applying quadrature rule implies that

(Ot 07 ).
N, ~ ~ ~
he < 0p; 090; .0 0o; A
:2|K+|qu l( 11;? +azlaz>nm+<12;? +a2282>ny] o
q=1 q Ng—

Now for the term (9,v~,u™),

€

Applying quadrature rule implies that

(Ondy ¢*>

N, ~
0P, 09; 00 090; -
[(all ;ﬁ + o1 82 ) Ng + <a12 ;ﬁ + G2 82 ) nu‘| or
Ng—q+1

q

It is important to note that for any interior edge e and all 7,5 =1 to NV

((ons01),) = ((0no7.67),)

and

(@ .67),) = ((0ns 07),)"

which implies that one has to calculate and store only one off-diagonal matrix block for each interior
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edge e.
Therefore for the Baker formulation one obtains

N
At = (Z <5n¢j+,¢{>e) (A.10)
cce! i.j=1
and
(=) )"
Ae,l = (Ae,l ) (All)
thus giving
Aer = AT+ AT, (A.12)

Note that the superscripts (—,+), (+, —) indicate that the matrix block is acting on the vector
coefficients o™, ™ respectively.
For the Arnold formulation

N

_ 1 _ _
Ag,llj—) = (Z 5 (<an¢;ra¢1 >8 - <6n¢1 7¢;r>e>) . (A.l?))
ec&l i,j=1
1 N
AL = (Z 5 ((Onsf 07), - <an¢;,¢j>e)) (A.14)
ec&! i,7=1
and
(=) _ [ 4)T
Al = (Ae,1,+) (A.15)
T
Alp? = (alh2) (A.16)
thus giving
A = AT + ALY (A.17)
Aca— = AT + Al (A.18)
and
Ae,l = Ae,1,+ + Ae,l,— (Alg)
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Off-Diagonal Blocks: Penalty Mix Terms.

Penalty mixing terms vyh. *(u®,v™ ). and yh, {u~",v"). also contribute to formation of the off-
diagonal blocks A.. Following a similar path to what was done in the previous section

N
vhe Nt o) e = bt Y ol (6, )
i,j=1
with
N, L
< ;_7¢1_>6 = he 'UA}q¢J o
q=1 q INg—q+1
implies
a ~ ~
Yhe NG b7 )e =7 Y Wgds|
q=1 q Nq—q+l

Note here that as before the h_ ! weighting factor is absorbed into the edge quadrature. Similarly

vhe Hu” vt e = byt Z (67 67 )e
3,7=1
with
Nq
(07,08 )e =he Y _ g &;
q=1 Nq_q+1 q
implies
Nq
Yhe NG5 b )e =7 e %
q=1 Nq_q+1 q
Therefore

T

(he (@5, 6)e) = (he (@), 67)e)
Thus, for both the Baker and Arnold formulations the penalty contributions to A, can be rep-
resented as

N
AL = (Z vhe ' j,¢f>e>_ (A.20)

ec&l i,5=1
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Table A.1: Bilinear form calculational routines

Terms Routines
Ak Diri
A2, A%, Flux_p
A, Fluxm
Al 5, Ak 3 pnlt template (templs.c)
A(7 + Fluxmix_p
Ae l’i), Ae l’t) Flux mix p, Fluxmix m
Ag; ) pnltmx template (templs.c)

and
N
AT = (Z vhe H¢5 , 6F) ) (A.21)
cee! ij=1
implies
Ao = AT + A0, (A.22)

Off-Diagonal Block Assembly.

For both the Baker and Arnold formulations, for all e € £7, assembly of A, can be described as

Ae = Ae,l - Ae,2- (A23)

Stiffness Matrix Assembly.

To put this all together then, the stiffness matrix A for the Baker formulation can be assembled as:

A=Y Ax+ > A (A.24)

KeT, ec&l

Note that Ax also involves summing over edges e, however this decomposition of the matrix clearly
delineates the diagonal blocks from the off-diagonal blocks. Routines used to calculate specific terms
in the bilinear form are listed in Table A.1.

185



Appendix B

E112 Test Problems

Test Problem - fO
Domain Q: Figure B.1
{—Au =0 inQ

u=1 onl'p

Exact solution: u = 1.
This problem is trivial and has a constant solution providing a quick check on overall code function-
ality.

Test Problem - f1

Domain Q: Figure B.1

—Au=-4 inQ
v=x+y>2 onlp

Exact solution: u = 22 + 72
This problem has a smooth polynomial solution of degree 2. When elements involving polynomials
of degree 2 or greater are used, the code should produce exact solutions from the initial mesh.

Test Problem - {2

Domain Q: Figure B.1
—Au=2z(l—z)+2y(l—y) inQ
u=20 onI'p
Exact solution: v = zy(1 — z)(1 —y).
This problem has a smooth polynomial solution of degree 4. When elements involving polynomials

of degree 4 are used, the code should produce exact solutions from the initial mesh. The problem has
homogeneous Dirichlet boundary conditions and the solution is solely driven by the forcing function.
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Figure B.1: Square Domain

Test Problem - {3

Domain Q: Figure B.1
—Au = 2r?sin(rz) sin(ry)  in Q
u=20 onI'p
Exact solution: u = sin(wz) sin(my).
This problem has a smooth non-polynomial solution. The problem has homogeneous Dirichlet
boundary conditions and the solution is solely driven by the forcing function.

Test Problem - f4

Domain Q: Figure B.1
—Au = 12872 sin(87z) sin(87y)  in
u=~0 onI'p
Exact solution: u = sin(8wx) sin(87y).
This problem has a smooth non-polynomial solution which is oscillatory across the domain. The

problem has homogeneous Dirichlet boundary conditions and the solution is solely driven by the
forcing function.

Test Problem - {5
Domain Q: Figure B.1

—Au = 22 (sin(mz) sin(ry) — 1) in Q
u=1 onI'p

Exact solution: u = sin(mx) sin(7y) + 1.

This problem has a smooth non-polynomial solution, similar to test problem {3, shifted up by 1. This
problem tests more aggressively the application of non-homogeneous Dirichlet boundary conditions,
with the solution being driven by both the forcing function and the BC’s.
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I'p

I'p

Figure B.2: Notch Domain

Test Problem - f6

Domain Q: Figure B.2
—Au=20 in
u=1r??sin(2/30) onTp
Exact solution: u = %/ sin(2/36).
This problem has a point singularity in the first derivative at the origin. This problem really stresses

how well the adaptive algorithms work. Note also that the solution to this problem is solely driven
by the trace of the solution on the boundary.

Test Problem - {7

Domain Q: Figure B.3

—Au=0 in{
u=20 onI'p
%:—1 OHFN

Exact solution: Not known.

This problem has two point singularities due to mismatch in the first derivative at the corners where
I'p NTy # 0. This problem tests to see if mixed boundary conditions and adaptive strategies are
working properly.

Test Problem - {8

Domain Q: Figure B.3
—Au = 2r?sin(rz) sin(ry)  in Q

u=~0 onI'p
O _rsin(ry) r
— = — 7T SIN(7 on
on Yy N
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I'p

Exact solution: u = sin(wz) sin(7y).

T2

T'p (1,1)
Q 'y

1
I'p

Figure B.3: Mixbc Domain

This problem has a smooth non-polynomial solution and is the same as the solution as for test
problem f3. The problem has homogeneous Dirichlet boundary conditions and non-homogeneous
Neumann boundary conditions. The solution is driven by the forcing function and the boundary

conditions.
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Appendix C

E114 Stiffness Matrix Assembly

Detail

Diagonal Blocks: Laplacian term.

Assume that on K the following functions are defined

and

where N is the number of degrees

u(x) =Y u(x{)of (x)

N
J=1

of freedom and for convenience we will drop the superscript K

annotation unless otherwise needed. Then

(Au(x), Av(x)) x =

] =

/K Au(x)Av(x) dx
/K Au(x)Av(x) dx

By | Ap;Ag; d
1U(XJ)/K $jAP; dx

i,

<
Il

N

(A, Adi) e u(xE) = Y~ (Mg, Agy) e

1 3,J=1

IMZ

%,
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where {aK N | are the unknowns (dofs) for triangle K. Applying change of variable transformations

for quadrature over the reference element K implies
+ Cco— +c —
2 3 9y2

(N e 2 @] 1
A0jAGi = (2|K|) l 022 T “az05 T P g (2|K|) “oa2 T 9505

(LN 0% 9% 9%, PO P P
= (2|K|) l 222 " 2gz05 T %o | |“ a2 T Paz0g T a2

0% 0%, 32éi]

Thus, with N, being the number of quadrature points for a chosen quadrature rule and evaluating
each partial derivative at quadrature points ¢, ¢ = 1,..., N, with quadrature weight w0,

(Agj, Adi)ye =

1 @ 0, 0, %9, B¢ 0% 9%
(2|K|) l 21K1) Z“’q (Cl 2 T %9z09 T a2 | \“ a2 T “ozag T o
q q

or
20, 0% L %0 i ¢ 0%
@mﬂlihh< ; %£+%85>( 82*2%®+@8f>]
q q
Note that
N
AKJ = ((A(b], A¢1)K> (Cl)
i,j=1

is a symmetric matrix and is the Laplacian portion of the diagonal block matrix A.

Diagonal Blocks: Flux terms.

Associated with each interior edge e € £ are two triangles, (K, K~). The edge integrals which
contribute to the diagonal blocks relating to fluxes are

<8n(Av+), u+>e - <Av+, Bnu+>e + <8n(Au+),U+>e - <Au+, 8nv+>e,
(On(Av7), u_>e — (Av7,0hu”), 4 (On(Au7), v_>e —(Au™,8,07),

for Kt and K, respectively, and where n is the unit outward normal to K.
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First consider the term (9, (Av™)

<8n( =

i)

iv: < Za A¢+>
ot

On(A¢))), -

Applying quadrature rule implies that

N, ~ ~ ~ ~

1) . 3, 93, 93, 3,

+ + _ - ) g i g i
<¢j , On (A )>8 = he <—2|K|) ;wq{% [(dll 93 + di2 93203 + di3 5077 +dia Y Ny

9% 9*¢; 9*¢; 9%p;
+<d21 fb + da2 A(b + das A(b + doy (b)ny]}
q

013 01207 01072

o)

N
<¢j,2ajan A¢+>>

Now consider the term (9, (Au™), vT):

Mz

<(9n(Au+), U+>e

—

' —
Mzﬁ

N
Il
-
Q
,_.

€

I
IMZ
Q
e

<¢ (A¢j)>e ’

s

&
Il
a

Applying quadrature rule implies that

1 Vs 9°h; P, P, P,
n N . _ j j j j
(67, 0n(Ag) )>e = he (—2|K|) qul 11Jq{(;5Z [(du 95 T di2 9320} + di3 950,7 + dia 35 Ng

0°9; 99 99 09
+ <d21 (%3] + d22 8@28]@ + das 81?8@]2 + daa 35 3] :
q

Note that similar formulae exist for the terms (0, (Av™),u™),, (On(Au™),v7),.
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Now consider the term (AvT, 9, u™

N
(Avt, Oput)e = < Agt, Vut n>

N

i=1

[

Applying quadrature rule implies that

ia

J=1

>e:
=1
N obT ot
o o (350
j=1

€

+8’n,

o7,

N, 2T ~ ~ ~
: 1 0% ¢; 0%, 02 p;
JF JF . A K3 K3 (3
(807, 0n07) = ha;wq{ (2IK|) ‘o5z T “oz05 T o5
1 [(. o0¢, 8¢ b 06
m < ail ;SA + a1 ;;j)nm-i- (a12 ;;AJ + Qg2 8(?)])””]}
L q
or
N r N - .
1\ 2, 824, 824
+ . A~ K3 K3 (3
(aar2.69). = e ) q—lwq{ o " 50y T o
. 0d; 99 0d; 99
. l(alla—fcj + Q921 33;) Ng + <a128—5€] + 223—?]] Ty .
q
Now consider the term (Au't,d,v")
N
(Au™,0,0T) Za}Aqﬁj,Vﬁ n>
j=1 .
N N
=Y af <A¢j,zan¢j>
j=1 i=1 e
N
= af (Ad],0u0]), .
i,j=1
Applying quadrature rule implies that
N, 9 - . .
- 1 0%, 0%, 0%,
+ -\ . j j j
(Do), 0nd"), = he;w‘I{ (2|K|) [cl 022 “azay TP g
1 (. 06 9 0 . O
: m l(au ;ﬁ + as1 (,;Z ) Ng + <a12 a(i + a228—§> ny‘| }
q
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or

N, . . .
1 3 a2¢, 32¢, 32¢}

+ +\ § :A J J J
(A¢],0u67), = he (2|K|) q_lwq{ lcl oz T “azo5 | “ og?

_0bi . 00 0bi . 00
. l(au ai' +azla—g> Ny + <a12 6@ +11226—g> ny]} .
q

As before, note that similar formulae exist for the terms (Av™,9pu™ )e, (Au™,0pv ™ e.
For the Baker formulation (Eq. 4.7) one obtains

N
Ags = ( 3 [<<z>i+,an<A<z>j>>e—<A¢i+,an¢j>e+<¢j,an<A¢j>>e—<A¢j,an¢f>e}>
Pt b=l

(C.2)

is a symmetric matrix and contributes to the Fluz portion of the diagonal block matrix Ag. For the
Arnold formulation (Eq. 4.8)

N
ALy = (% 3 [<¢j,an<A¢j>>e—<A¢j,an¢j>e+<¢j,an<A¢j>>e—<A¢j,an¢j>e}>
ecOK

4,j=1
K=K%t

(C.3)
and

1 N
Ak = <5 > [<¢i,8n<A¢j>>e—<A¢i,8n¢j>e+<¢j,an<A¢i>>8—<A¢j,an¢i>e]>

e€OK
K=K~

ij=1
(C4)

both contribute to Ag.

Diagonal Blocks: Penalty terms.

Penalty terms yh_ ! (9 u™, 0,0"),, Yhot (Opu™, 0007 ), vho3(uT,vT)e, and yh 3 (u™,v7). also
contribute to the formulation of the diagonal block A .
Following a similar path to what was done in the previous section

N
Yhe Bt v e = vh® Y al (), 6 )e

ij=1

with

Ng
(@F, 65 )e = he Y 1bg[d;ilq

q=1
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implies

Ng
Yhe 6T b7 e =Ahs® Y g[didil,-

q=1

Similarly for K~
D7 0 )e = VR Z g [

Derivative penalty terms require special consideration:

N
Yhe HOnut, 0 )e = yh ' D ol (0nd ], Ondy

ij=1

with

X 3¢ . 09
< n¢J aan(bJr = he qu2|K| [( + a2 ayj>nz

00; , . 09 1 (. 99 09
+< 12—+ 9% + G99 8y>ny] 2K l(au 9% + a1 8y>nm+<
q
implies
all ¢ ¢
-1 + -\ __ N J A j
'Yhe <8n¢j ,8n¢z' > - (2|K|)2 qgw [(all 9% + a2 B ) Ny
a 6¢E S (9(25 ~ aq;z 6&1
+ (a12 81?] 2 8;) nu‘| [(all PE + a1 8y>nm+ (
q

Similarly for K~

e < n(bj 7an¢

N, A .
z:: l( 11— 95 +a21%q;j>nm

09y . 09
+ (au% + az2%> ny‘|
q

Therefore, the penalty contributions to Ax can be represented as

or ay

Afs = ( > [”yh;3< 05 e AT (0], 00
ecOK
K=K+t
ecé
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2 + G2 90

. 0¢i 3¢zn
g yq

O, O,
a12 8¢A + G2 8?;

8A' 81 81 ~ 8A’L’
<&11 i + do21 ¢>nz+<d12 ¢ + gy — ¢

or oy

N
J)
ij=1



and

N
Axs :=< > [vh;1<¢;,¢;>e+vhg1 <an¢;,an¢;>e}> : (C.6)
ecOK ij=1
K=K~
ec&l

Diagonal Block Assembly.

For the Baker formulation, K~ contributions to Ax only occur through the penalty terms Aj ,.
For the Arnold formulation, contributions to Ak involve the flux terms Ay , and the penalty terms
Ay 5. Since DG allows the presence of hanging nodes, special care must be taken with respect to

accumulation of Ax components due to K~ contributions. In the case where a hanging node is
present along an edge e € 0K and K = K, then A 5 terms will accumulate in Ax from all (up to

two) triangles adjacent to K along e. Therefore, A1_<,3 can be rewritten to take hanging nodes into
account as

D M L MR

ecOK
K=K~
eg€l
N
4—7hm1<8n¢j,8n¢i>el+—7h®1<an¢j,8n¢i>@}> . (C.7)
i,j=1

Note that we assume here that if K = K~ and along edge e € K there are two neighboring
triangles (i.e., edge e is split into two edges e, es), then both neighboring triangles K., , K., are

both considered to be K, K[, relative to ey, ey respectively.

Then for all K € 7, assembly of Ax can be described for the Baker formulation as
Ag = A1+ Ak + A s+ Ag s (C.8)
and for the Arnold formulation as
Ag = Ak + A;r(z + A?{,z + A;r(,s + A;(,B' (C~9)

Off-Diagonal Blocks: Flux Mix Terms.

The edge integrals which contribute to the off-diagonal blocks relating to fluxes are

o (On(Au™),v7),, (Aut,dpv7),,
o (O (AvT),u™), (AvT,d,u™),,
o (Op(Au),vh),, (Au~,0,vT),
o (On(Av7),ut), (Av™,0,ut),

196



which describe the mizing of fluxes through edge e.
Now consider the term (9, (Au™),v™)e:

Applying quadrature rule implies that

3 N ~ ~ ~
_ q 93, 3o, 3o oAty
+ _
<8n(A¢j ): &; >e <2|K+|) E Wy [(du Ty dlzaAQ(;g + di3 8@33}]2 + dig 8@3] Ng

8¢, 9%, 03¢, 8¢, -
+ <d21 93 +d228A28Jg +d238j822 + day 25 3J Ny | i

Nq*‘ﬁ”l

Now consider the term (9, (Au™),vT):

<(9n(Au_), U+>e

Il
—
el
>
<
E

=
©-
=+

m\/

.
Il
—

Il
] =
—
=
>
S
s
~_—

I
(1=
Q\
~
&
>
<
S
3
~—
)

-
&,
I
—

Applying quadrature rule implies that

N, . R
_ 04, 04, 9, 9,
(On(D0),07), =h (2|K |> z:: [(dll / +d128A25g+d138£852 +dis 25 3J

93 93 93 93 .
+ <d21 %) + da2 o= 0; + daz 4 0; + das ¢J> ”y] oy
q+1

93 93207 97072 97

q

Note that similar formulae exist for (9, (Av"),u™). and (9, (Av™),ut)e.
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Now for the term (Au™,d,v7 )

(Au be <Au+ Zam >

N N
Z<ZajA¢ an¢i>
=1 =

N

:Za 8n¢>

7,j=1

€

Applying quadrature rule implies that
9 R R
0%p; 0%, 0%,
A . —h, J j j
(AdT,0n07) qu{<2|K+|) [ 02 T 2oz05 T @ g2

q

1 . 9gi . O . 0gi . O
2|K~| l(all 0% o ag>”z+ (al? Oz Ty 9 " Ng—q+1 '

or

N, . . R
_ h : 020; 0% 0%
+ _ e - j j j
(A, 0n¢; ), = SRR qg_lwq{ [m 552 T 5505 +c3 B2
= q

. 0 . 0 8 . 0
: l(au 9% + ao; 8y>nz+ (alz 9% + a22 ay)nle }
q—q+1

Now for the term (Au~,d,v7),

/\

<Au Zan¢+>

Z aj 8n¢;r>e.

1,j=1

e

(e

Jj=1

€
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Applying quadrature rule implies that

N, N N .
h i 52(;54 52(;54 52(;5‘
— + _ e A J J J
(D¢, 000 ) = ST qglwq{ [cl 52 T 252 7 +c3 N
= q—q+1

0bi . 00 0bi . 09
. l(au ai' +azla—g> Ny + (alz 6@ +11226—g> ny] }
q

Note that similar expressions exist for (AvT,d,u™)e and (Av™, dpu™)e.
It is important to note that for any interior edge e and all 7,5 =1 to NV

(n@01)00),) = ((on(a6),67),)

and

((ao7,0,:07),) = ((a6F.0007), )

which implies that one has to calculate and store only one off-diagonal matrix block for each interior
edge e.
Therefore for the Baker formulation one obtains

N

A= (Z (0u(A07),67), — (A0T, an¢i>e) (C.10)
ec&l 1,j=1
and
) +-))"
Ae,l = (Ae,l ) (Cll)
thus giving
Acq = A5 4 A0 (C.12)

Note that the superscripts (—,+), (4, —) indicate that the matrix block is acting on the vector
coefficients o™, ™ respectively.
For the Arnold formulation

N
ALY = <Z %(<an<A¢j>,¢;>e — (A0S 0n07), —(0n(A07),6), + (D67, 0nd] >e)

ec&l i,j=1

AP = <Z §(<an<A¢j>,¢j>e —(ApS,0n05 ), — (0u(Dg] ). 0 ) + <A¢j,an¢j>e)
ec&l
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and

A (40T
e,l,+ — ( e,l,+ ) (015)
_ N\ T

AGH = (Agfﬁ)) (C.16)

thus giving

Acay = AT 4 A7) (C.17)
Ay =A00 440D (C.18)
and

Aen =Ac1+ + Aea, - (C.19)

Off-Diagonal Blocks: Penalty Mix Terms.

Penalty mixing terms

Yhe 3 (@), 67 Ve
Yhe 3 (@7 ) Ve
Yhe (000, 0007 ),
Vhe P (Ondy O] ),

also contribute to formation of the off-diagonal blocks A.. Following a similar path to what was
done in the previous section

N
I3t v e = YR Z at (¢F

i,j=1
with
Nq
< ;_7¢Z_>6 = he 'UA}q¢J ®i
q=1 q q—q+1
implies
N,
YheHOF, 67 Ve = 7D 1bed;| i
g=1 q INg—q+1
Similarly
vh ™ vt )e = v Z (6765
4,j=1
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with

Ny
(bj 7¢+ = Z

Ng—qg+1 q

implies

i

Nq*‘ﬁ”l

Nq
Y3 (7, 6 Ve = Yhe® Y tigd;
g=1

q.
Therefore .
(he?(d5, 81 )e) = (he (0, 67 )e)

Now for the first derivative penalty terms

N
Yhe  (Onut, 0007 e = vhe ' D af (0ndT, 0ndy e
ij=1
with
1 a 06 0 06 06,
+ — 5 ~ ~ '
<8n¢j ,On®; > szql<all Er + Q21—+ 95 ) Ng + ( a12—(j= 97 + a2 —=— 95 ) ny]
q
. 0, O O O,
.[(au({fA + a9 ;;)nm'f'(lz;i +a22;;>ny] .
Ng—q+1
implies

_ 09y . 09; . 0b; . 0P
1 J J J
<8n¢ an¢ > 4|K+||K | § wq l(all 9% + ag; ay ) Ng + <a12 07 + a22 ag ) ”y‘|
q
. O . 0 . Oy
. [( (,;i + ao1 6(2 > Ng + <1112 (;{ + Q922 6(2 > ny] .
Ng—q+1

vhe H(Onu™, Opv™ —vh‘lz (0 0] )e

1,j=1

Similarly
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with
N, A
_ 09
+ § : i J
<an¢J 78n¢1 > 4|K+||K | o [(all 9% + a21—+ 8y ) Ny

) ) 0, O, _0d; . 09
+< 8¢A + a22 (bj) ] H- [(au aqi + as1 52)”14'(&12 ai +a226_f)> ”y] .
q —q q

implies

N, . R
_ _ gl S, 99 . 09,
Yt (Ondy 007 ), = WquKana—g—i—am 8yJ>nm

q=1

_0d; . D b . O . 0 . 0
+< 6¢A + az2 ;J)”y] : l( 6? + a2 (;b >M+ (alz ;i + a2 ;) )”y] .
Y Ng—q+1 y Y q

Thus, for both the Baker and Arnold formulations the penalty contributions to A. can be rep-
resented as

N

A = (Z Vo 67 e +h;1<an¢j,an¢i>e]) (C.20)
ec&! 4,j=1
and
N
AT = <Z Ve 2 (67, b5 )e + h (005 8n¢j>e]> (C.21)
ec&! i,j=1
implies
Ao =AY + AT, (C.22)

Off-Diagonal Block Assembly.

For both the Baker and Arnold formulations, for all e € £7, assembly of A, can be described as

Ae = _Ae,l - Ae,Q- (023)

Stiffness Matrix Assembly.

To put this all together then, the stiffness matrix A for the Baker formulation can be assembled as:

A=Y Ax+ > A (C.24)

KeT, ec&!

Note that Ag also involves summing over edges e, however this decomposition of the matrix clearly
delineates the diagonal blocks from the off-diagonal blocks. Routines used to calculate specific terms
in the bilinear form are listed in Table XXXX.
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Appendix D

E114 Test Problems

Test Problem - 2
Domain Q: Figure D.2

A2y = 28822y? — 48y + 8 + 7222 + 24y* — 28822y
+72y2% — 2882y + 288zy — 48y> — 48z + 24x* — 482%  in Q
u=0,u=0 onI’

Exact solution: u = 22y* (1 — z)* (1 — y)°.
This problem is a standard biharmonic test problem.

Test Problem - {3

Domain Q: Figure D.2

A2y = 247 — 407 (cos(mz))? — 4074 (cos(my))” + 6474 (cos(mz))? (cos(my))®  in Q
uw=0,u=0 onTI

Exact solution: u = (sin(7z))? (sin(wy))>.
This problem is a standard biharmonic test problem.

Test Problem - f4

Domain Q: Figure D.2

A%y = —16 cos(2mz )t + 64 cos(2mz) 7 cos(2my) — 16 cos(2my)n*  in Q
u = 6nu =0 onI

Exact solution: u = (1 — cos(27wz)) (1 — cos(27y)).
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Figure D.1: f2 Exact Solution

T2
I (1,1)
1
r 9] r
T
0 r 1

Figure D.2: Square Domain
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Figure D.3: f3 Exact Solution

Figure D.4: f4 Exact Solution

205




This problem is a standard biharmonic test problem. This problem is similar to f3, differing in
magnitude.
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