

Intermediate L^AT_EX I

Michael A. Saum

University of Tennessee
Department of Mathematics

Overview

- The **geometry** Package
- Aliases
- Equation Environments
- Theorem Environments
- List Environments
- Tablular Environments
- Miscellaneous Packages
- Loose Ends

The **geometry** Package

- The **geometry** package is used to easily set margins in a L^AT_EX document.
- The complete documentation is available online in

`/usr/share/texmf/doc/latex/geometry/geometry.dvi`

- The simplest use is

```
\usepackage{geometry}  
\geometry{left=1in,right=1in,top=1in,bottom=1in}
```

- This will set up 1 inch margins for the whole document.
- Note that this package has problems working with ams* document classes.

Aliases

- You have the capability to redefine complicated L^AT_EX expressions so they can be accessed with a simpler command.
- I usually define a group of these commands, put them between the `\usepackage{...}` and the `\begin{document}` statements.
- Note that defining commands like this, one has to be judicious in choice of names so as not to conflict with existing L^AT_EX commands.

Aliases, contd.

- For example

```
\newcommand{\A}{\mathcal{A}}
\newcommand{\D}[1]{\mathbb{#1}}% Doubled -Blackboard bold
\newcommand{\NN}{\mathbb{N}}
\newcommand{\RR}{\mathbb{R}}
\newcommand{\Rn}{\mathbb{R}^n}
\newcommand{\Rnp}{\mathbb{R}^{n\_+}}
\newcommand{\Rnm}{\mathbb{R}^{n-1}}
```

- The following \LaTeX snippet

```
$$ \A \quad \NN \quad \RR \quad \Rn \quad \Rnp \quad \Rnm $$
```

would produce

$$\mathcal{A} \quad \mathbb{N} \quad \mathbb{R} \quad \mathbb{R}^n \quad \mathbb{R}_+^n \quad \mathbb{R}^{n-1}$$

Equation Environments

If you are going to typeset mathematics of any kind, you should be familiar with these documents. I defer discussion of Equation Environments to these documents.

- Chapter 8 of the **LATEX** Companion. Note that a postscript version of this chapter only exists online and can be found at:

<http://www.loria.fr/services/tex/texbib/ch8.ps.gz>

- **AMS LATEX** Users Guide is available at:

<ftp://ftp.ams.org/pub/tex/doc/amsmath/amsldoc.pdf>

- Another **AMS** guide to typesetting math is at:

<ftp://ftp.ams.org/pub/tex/doc/amsmath/short-math-guide.pdf>

Theorem Environments

- You need to include the `amsthm` package.
- A nice short guide to the AMS theorem environments is at:
`ftp://ftp.ams.org/pub/tex/doc/amscls/amsthdoc.pdf`
- There are three built in *theoremstyles* (you can design your own if you really get ambitious). These are:
 - plain
 - definition
 - remark

Theorem Env., contd.

- Here is a sample of what I put in my L^AT_EX documents between the `\usepackage{...}` and the `\begin{document}` statements.

```
\theoremstyle{plain}
\newtheorem{thm}{Theorem}[section]
\newtheorem*{thmn}{Theorem}
\newtheorem{prop}[thm]{Proposition}
\newtheorem{lemma}[thm]{Lemma}

\theoremstyle{definition}
\newtheorem{defn}[thm]{Definition}
\newtheorem*{defnn}{Definition}
\newtheorem{ques}{Question}[section]

\theoremstyle{remark}
\newtheorem{rem}[thm]{Remark}
\newtheorem*{remn}{Remark}
```

Theorem Env., contd.

- Note that after each theoremstyle statement, the theorem environments which are going to use that particular style are then defined.
- Note that non numbered theorem environments are indicated by the `\newtheorem*` commands.
- Note that numbering of the **thm** is tied to sections, i.e., whenever a new section is defined the counter for the next **thm** will be set to 1.
- Note that other theorem environments can be tied to the **thm** numbering (within section) or can be numbered independent of other theorem environments.

Theorem Env., contd.

The following snippet

```
\begin{thm}  
The real line  $\mathbb{R}$  is a complete metric space.  
\end{thm}  
\begin{proof}  
Exercise.  
\end{proof}
```

produces

Theorem 0.1. *The real line \mathbb{R} is a complete metric space.*

Proof. Exercise. □

Theorem Env., contd.

The following snippet

```
\begin{defn}
Two sets are {\em equal} if they contain exactly the
same elements.
\end{defn}
\begin{remn}
This is the {\bf remark} theorem style (not numbered).
\end{remn}
```

produces

Definition 0.2. Two sets are *equal* if they contain exactly the same elements.

Remark. This is the **remark** theorem style (not numbered).

List Environments

- There are three main list environments one uses in L^AT_EX .
 - itemize
 - enumerate
 - description
- List environments can be nested (Don't go more than 4 levels though).
- The itemize environment does not number the items.
- The enumerate environment does number the items. In addition, the style of the numbering can be changed at specific numbering levels.

Lists, contd.

The following snippet

```
\begin{itemize}
\item First Item
\begin{itemize}
\item First Subitem
\end{itemize}
\item Second Item
\end{itemize}
```

produces

- First Item
 - First Subitem
- Second Item

Lists, contd.

The following snippet

```
\begin{enumerate}
\item First Item
\begin{enumerate}
\item First Subitem
\end{enumerate}
\item Second Item
\end{enumerate}
```

produces

1. First Item
 - (a) First Subitem
2. Second Item

Lists, contd.

The following snippet

```
\renewcommand{\theenumi}{\Roman{enumi}}
\renewcommand{\theenumii}{\Alph{enumii}}
\renewcommand{\labelenumi}{\bf \theenumi.}
\renewcommand{\labelenumii}{\bf \theenumii.}
\begin{enumerate}
\item First Item
\begin{enumerate}
\item First Subitem
\end{enumerate}
\item Second Item
\end{enumerate}
```

produces

- I.** First Item
 - A).** First Subitem
- II.** Second Item

Lists, contd.

The following snippet

```
\begin{description}
\item[Tip] Don't go out in the rain without an umbrella.
\item[Soaked] Ignore the previous tip.
\end{description}
```

produces

Tip Don't go out in the rain without an umbrella.

Soaked Ignore the previous tip.

Tabular Environments

- There are various forms of tables one can create in **LATEX** , where one needs to keep in mind the following:
 - Is the table going to be referenced in the document? If so, nest the **tabular** environment within the **table** environment and include a label and optionally a caption.
 - Is the table going to extend longer than one page? If so, use either the **supertabular** or **longtable** packages.
 - How are the columns going to be formatted? Is a column going to be **centered**, **left justified**, **right justified**, or **paragraph** with **word wrap** of what width?

Tables, contd.

Are there really special concerns, such as embedding graphics, etc.? Talk to me! Consider the following code segment

```
\begin{center}
\begin{table}[!htb]
\begin{tabular}{|l|r|p{1in}|c|}
\hline
{\bf Left} & {\bf Right} & {\bf Par} & {\bf Center} \\
\hline
A & B & This is a paragraph which is long. & C \\
\hline
11 & 22 & & 44 \\
\hline
\end{tabular}
\caption{Small Table}
\label{tab:1}
\end{table}
\end{center}
```

Tables, contd.

which produces

Left	Right	Par	Center
A	B	This is a paragraph which is long.	C
11	22		44

Table 1: Small Table

It should be noted that preferred table placement is specified in the `\begin{table} [!htb]` command, with *h* meaning try **here**, *t* meaning **top** of page, *b* meaning **bottom** of page. The **!** means ignore most default restrictions.

Miscellaneous Packages

The following packages are quite nice for specific purposes:

- **float** - allows more specific placement of floats (tables and figures).

`/usr/share/texmf/doc/latex/styles/float.dvi`

- **array** - enhances existing *array* and *tabular* environments.

`/usr/share/texmf/doc/latex/tools/array.dvi`

- **multicol** - allows multiple columns.

`/usr/share/texmf/doc/latex/tools/multicol.dvi`

- **algorithms** - typeset algorithms in a nice manner.

`/usr/share/texmf/doc/latex/styles/algorithms.dvi`

Miscellaneous Packages

- **fancyhdr** - control over page headers and footers.

`/usr/share/texmf/doc/latex/fancyhdr/fancyhdr.dvi`

- **fancyvrb** - improves on *verbatim* environment.

`/usr/share/texmf/doc/latex/fancyvrb/fancyvrb.ps`

- **seminar** - slide presentations (nice and simple).

`/usr/share/texmf/doc/latex/seminar/sem-user.dvi`

- **prosper** - slide presentations (almost Powerpoint, built on seminar package).

`http://prosper.sourceforge.net/prosper.html`

A very comprehensive list of packages exists at:

`http://tex.loria.fr/english/packages.html` and

`http://www.ctan.org/`

Font Sizes

Table 2: Fonts.

<code>\textrm{...}</code>	roman	<code>\textsf{...}</code>	sans serif
<code>\texttt{...}</code>	typewriter		
<code>\textmd{...}</code>	medium	<code>\textbf{...}</code>	bold face
<code>\textup{...}</code>	upright	<code>\textit{...}</code>	<i>italic</i>
<code>\textsl{...}</code>	slanted	<code>\textsc{...}</code>	SMALL CAPS
<code>\emph{...}</code>	<i>emphasized</i>	<code>\textnormal{...}</code>	document font

Table 3: Font Sizes.

<code>\tiny</code>	<small>tiny font</small>	<code>\Large</code>	larger font
<code>\scriptsize</code>	<small>very small font</small>	<code>\LARGE</code>	very large font
<code>\footnotesize</code>	<small>quite small font</small>	<code>\huge</code>	huge
<code>\small</code>	<small>small font</small>	<code>\Huge</code>	largest
<code>\normalsize</code>	<small>normal font</small>		
<code>\large</code>	<small>large font</small>		

Table 4: Absolute Point Sizes in Standard Classes.

size	10pt (default)	11pt option	12pt option
<code>\tiny</code>	5pt	6pt	6pt
<code>\scriptsize</code>	7pt	8pt	8pt
<code>\footnotesize</code>	8pt	9pt	10pt
<code>\small</code>	9pt	10pt	11pt
<code>\normalsize</code>	10pt	11pt	12pt
<code>\large</code>	12pt	12pt	14pt
<code>\Large</code>	14pt	14pt	17pt
<code>\LARGE</code>	17pt	17pt	20pt
<code>\huge</code>	20pt	20pt	25pt
<code>\Huge</code>	25pt	25pt	25pt

Loose Ends

- There is much I have not covered, yet there are many references on the web. I suggest downloading and reading one of the many. A couple of good ones are:
 - <http://www.loria.fr/services/tex/general/lshort2e.pdf>
 - <http://www.loria.fr/services/tex/general/gentle.dvi>

Loose Ends

- When faced with a \LaTeX problem, go to **google** and do a search with first word `latex`, followed by other keywords. Depending on what google finds, I may click on the **groups** tab to go to newsgroup articles and discussions related to my initial query. Someone else may have already solved my problem!
- Use brackets `{ }` extensively when working with \LaTeX .
- Next workshop will cover graphics and bibliographies in \LaTeX .