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Finite Element Approximation of solutions to
Elliptic PDEs.

Adaptive Refinement is required for efficient and
accurate numerical approximation.

Use of aposteriori estimators aids in the decision
making process regarding where to refine.

Modification of SER (Solve - Estimate - Refine)
Iterative procedure.(Dorfler, 1996)

Joint work with Ohannes Karakashian.

Use of the t r i angl e and showme programs
(Shewchuk, 1996) for generating initial mesh and
pictures.
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Discontinuous Galerkin (DG) methods sacrifice
additional degrees of freedom (unknowns) for the
following benefits:

Regular refinement of triangular elements by
connecting midpoints of edges.

No continuity requirements of solutions along
edges between elements allows for easy
construction of trial and test spaces.

Preserves minimum angle condition.

Allows use of highly nonuniform and
unstructured meshes.
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We have chosen the Symmetric Interior Penalty
formulation of DG. There are several advantages to
making this cholice:

Stiffness matrix is symmetric, positive definite.

Allows for use of symmetric linear solvers such
as Conjugate Gradient and Preconditioned
Conjugate Gradient.
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Let Q c R?, d = 1,2, 3 be a bounded open polyhedral
domain with Lipshitz continuous boundary.

—Au=f In )
U= gp onl'p (MP)
Vu-n=gy Only

where 02 := 1 = I'p U Iy and n 1s the unit normal
vector exterior to 2. We also assume that g 1(I'p) >

0, f € L?(Q), gv € L*(T'y). Notation follows that
used in Karakashian and Pascal (2004)
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With the Energy Spaces defined by
Ey,= || H*(K)

KeT,

we introduce the bilinear form a) : Ej, x E, — R as

a, (u,v) = Z (Vu, Vo)

KeT,,

_ Z (({&m}, [U]>e + <{8nv}7 [u]>e

I, \cB
ecE UER

= k! ([u], o))
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7U>F — fF uv dS? ‘U‘F — <Uav>11“/2

Wle=vTe—v7]e, vV =v|g+, v =0|g-,e€&!
We can use either the Arnold (Arnold, 1982) or Baker
(Baker, 1977) formulation for {0,,v}]., eec &l

1 (dvt v
{0}l = 5 (aZ—+ n a%) ee& (Amold)
+
(0,0}, = g% Cecé! (Baker)
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a; is continuous and coercive

1. Jaj(u,v)] < (1 + ) ulallollin,  Vuv e By
2. There exists positive constants ~, and ¢, such that
for v > v

ay(v,v) = callvlli, Vo€V

where the energy norm on Ej, IS

[ollin = (D IVollk

KeT,

* Z (he’{(?n?)}‘g+h61’[v]‘2))1/2

B
ecEIUES
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Introducing the functional /' : E;, — R

F(v) = (f,v) = > (9D, 0nv — vh; 'v)e

ectE

+ Z(gN,v>e, Vv € E),

ecEl

Implies the DG Finite Element approximation
problem is to find w, € V} such that

aj(ul,v) = F(v), YoeVl  (DG)
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a; IS symmetric, positive definite.

The choice of v varies as 72 and is made to force
coercivity of CLZ

Described in Karakashian and Pascal (2003,

"NN A

£LUVU4 ),
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We utilize a residual type aposteriori error estimator
based on the RHS of the foIIowing'

Theorem (r\ou akashian and Pascal (2004)). Let
e =u —u,. Then

> Vel < e S mklf+ Aujlik

KeT, KeT,

+ Z he|[Onu]]Z + Z helgn — 0wy |2

ec&l ecEL

F92 YRR 42D At gn — ] ?)

I B
ecé ecéy

SIAM-SEAS, March 2005 - p.12/32



It Is iImportant to distinguish between the marking
of elements to be refined based on the aposteriori
error indicator and the actual process of
refinement.

We impose conditions on the refinement process
such that a 1-irregular mesh is obtained (i.e., only
one hanging node per edge can exist in the mesh).
Note that this implies that no single triangle can
have more than two triangles as neighbors.
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Note that no continuity of solution constraints are
Imposed on the midpoint nodes of the edges In
the DG case whereas with Standard Galerkin
these nodes are not free.

We will focus here on the Marking Strategy for
refinement only, noting that a similar coarsening
marking strategy can be implemented for
evolution PDEs.
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Assume that on 7;, that the solution u; has been

calculated, where 7 Is the estimator being used.
M\Aafl~.- 100~
(Dorfler, 1996)
1. VK €T,
(a) Calculate ng
(b) Calculate nmax
(c) Calculate ny. =3t Mk
2. s=0, 1=1.
3. While s < 0%2.
@ t=17—v
b) VK €T,
I. If K isnot marked AND If ng > Thmax
A. Mark K for refinement
B. s=s+ 77%{
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This algorithm is guaranteed to stop because as
7 — 0 eventually s will exceed the threshold

Hzn%.
Choices for 0, v greatly affect how many
elements are marked each sweep through 7.

Once this algorithm finishes, the set of marked
triangles have the largest estimated error and are
then refined, after which the solver is called to
produce new error estimates and the process is
repeated until the total estimated error Is less than

some tolerance ¢, i.e., n7. < €.
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Conceptually this process can be thought of in the
following manner:

Consider a point singularity in €2, the typical error
distribution will be high for triangles near the
singularity and low for triangles away from the
singularity.

Multiple sweeps through 7;, are made with the
largest error triangles marked first.

After a sweep through 7;, Is made, If the
accumulated (marked) error is still less than the
threshold @ of the total error, then triangles with
less error are considered for marking, controlled
by 7 and v.
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Question. How does the choice of 6, v, and ¢ affect
the resultant meshes (and thus the approximate
solutions)?

To Investigate this question better, we will use
Preconditioned Conjugate Gradient (with Full
Multigrid as the preconditioner) to obtain
approximations to the following problems:

P1 Smooth function

P2 Point singularity in the interior of €2

P3 Mixed boundary condition induced gradient
mismatch at a number of points on the boundary.
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We will analyze how many triangles are refined and
reduction In total estimated error for various choices
of 6, v, and e. The finite element implementation uses
quadratic (» = 3) functions to approximate the solu-
tion on each triangle In 7,,.
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—Au = 27 sin(wx) cos(mx)  inQ
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Figure 1. P1 Geometry
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Figure 3: 6 = 0.9, v = 0.0005, € =.0.02
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Figure 4. P2 Geometry

SIAM-SEAS, March 2005 — p.23/32



runde: Lvl =8

NT = 346, NP = 354

K
5.0x10° W/l / .
. 404107 N/,‘AF/% 0.28
o0 . ,‘Iu%',f’,’;’/’%%’//
204107 %’ “!A‘éé;f////{‘!ﬁ'//////

3 “(’ "&Wj 0.14
1.0,<101t ‘l’A‘A.‘“M ’,4&@1‘% /// I i 0.07
o ‘ 0

7 Y -05 -05

Figure 5: 0 = 0.85, v = 0.0005, € = 0.02
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Figure 6: 0 = 0.95, v = 0.0005, € = 0.001
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Figure 7: 6 = (0.9,0.85), v = 0.0005, ¢ = 0.001
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Figure 9: 8 = 0.95, v = 0.0005, ¢ = 0.001
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Figure 10: 6 = (0.90, 0.85), v = 0.0005, ¢ = 0.001
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Efficient procedure for selectively refining only

the largest estimated errors under control of 9, v,
and e.

This procedure eliminates the need for sorting the
triangles by estimated error.

Flexible marking strategy can be modified to
Include marking triangles for coarsening.

v should be chosen small enough to select just
enough triangles to mark for refinement without
overrefining the mesh.
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Large 6 coupled with small » produces a good
mesh for singularity problems.

e should be chosen small enough only once one
has an understanding of the behavior of the
estimator for the particular problem under study.

The accuracy of the iterative solver might have to
be increased for highly refined meshes.
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