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Introduction
• Finite Element Approximation of solutions to

Elliptic PDEs.
• Adaptive Refinement is required for efficient and

accurate numerical approximation.
• Use of aposteriori estimators aids in the decision

making process regarding where to refine.
• Modification of SER (Solve - Estimate - Refine)

iterative procedure.(Dörfler, 1996)
• Joint work with Ohannes Karakashian.
• Use of the triangle and showme programs

(Shewchuk, 1996) for generating initial mesh and
pictures.
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Why DG?
Discontinuous Galerkin (DG) methods sacrifice
additional degrees of freedom (unknowns) for the
following benefits:

• Regular refinement of triangular elements by
connecting midpoints of edges.

• No continuity requirements of solutions along
edges between elements allows for easy
construction of trial and test spaces.

• Preserves minimum angle condition.
• Allows use of highly nonuniform and

unstructured meshes.
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DG Implementation
We have chosen the Symmetric Interior Penalty
formulation of DG. There are several advantages to
making this choice:

• Stiffness matrix is symmetric, positive definite.
• Allows for use of symmetric linear solvers such

as Conjugate Gradient and Preconditioned
Conjugate Gradient.
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Model Problem
Let Ω ⊂ R

d, d = 1, 2, 3 be a bounded open polyhedral
domain with Lipshitz continuous boundary.







−∆u = f in Ω

u = gD on ΓD

∇u · n = gN on ΓN

(MP)

where ∂Ω := Γ = ΓD ∪ ΓN and n is the unit normal

vector exterior to Ω. We also assume that µd−1(ΓD) >

0, f ∈ L2(Ω), gN ∈ L2(ΓN). Notation follows that

used in Karakashian and Pascal (2004)
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DG Formulation
With the Energy Spaces defined by

Eh =
∏

K∈Th

H2(K)

we introduce the bilinear form aγ
h : Eh × Eh → R as

aγ
h(u, v) =

∑

K∈Th

(∇u,∇v)K

−
∑

e∈EI∪EB

D

(

〈{∂nu}, [v]〉e + 〈{∂nv}, [u]〉e

− γh−1
e 〈[u], [v]〉e

)
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DG Formulation, contd.
• he = diam(e)
• (u, v)K =

∫

K
u · v dx

• 〈u, v〉Γ =
∫

Γ
uv ds, |v|Γ = 〈v, v〉

1/2
Γ

• [v]|e = v+|e − v−|e, v+ = v|K+ , v− = v|K− , e ∈ EI

• We can use either the Arnold (Arnold, 1982) or Baker

(Baker, 1977) formulation for {∂nv}|e, e ∈ EI

{∂nv}|e =
1

2

(

∂v+

∂n+
+

∂v−

∂n+

) ∣

∣

∣

∣

e

, e ∈ EI (Arnold)

{∂nv}|e =
∂v+

∂n+

∣

∣

∣

∣

e

, e ∈ EI (Baker)
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DG Formulation, contd.
aγ

h is continuous and coercive

1. |aγ
h(u, v)| ≤ (1 + γ)‖u‖1,h‖v‖1,h, ∀u, v ∈ Eh

2. There exists positive constants γ0 and ca such that
for γ ≥ γ0

aγ
h(v, v) ≥ ca‖v‖

2

1,h, ∀v ∈ V r
h

where the energy norm on Eh is

‖v‖1,h =
(

∑

K∈Th

‖∇v‖2

K

+
∑

e∈EI∪EB

D

(

he|{∂nv}|
2

e + h−1

e |[v]|2e
)

)1/2
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DG Formulation, contd.
Introducing the functional F : Eh → R

F (v) = (f, v) −
∑

e∈EB

D

〈gD, ∂nv − γh−1

e v〉e

+
∑

e∈EB

N

〈gN , v〉e, ∀v ∈ Eh

implies the DG Finite Element approximation
problem is to find uγ

h ∈ V r
h such that

aγ
h(u

γ
h, v) = F (v), ∀v ∈ V r

h (DG)
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Remarks
• aγ

h is symmetric, positive definite.
• The choice of γ varies as r2 and is made to force

coercivity of aγ
h.

• Described in Karakashian and Pascal (2003,
2004).
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Error Estimator
We utilize a residual type aposteriori error estimator
based on the RHS of the following:
Theorem (Karakashian and Pascal (2004)). Let
e = u − uγ

h. Then

∑

K∈Th

‖∇e‖2

K ≤ c
(

∑

K∈Th

h2

K‖f + ∆uγ
h‖

2

K

+
∑

e∈EI

he|[∂nu
γ
h]|

2

e +
∑

e∈EB

N

he|gN − ∂nu
γ
h|

2

e

+ γ2
∑

e∈EI

h−1

e |[uγ
h]|

2

e + γ2
∑

e∈EB

D

h−1

e |gD − uγ
h|

2

e

)
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Marking vs Refinement
• It is important to distinguish between the marking

of elements to be refined based on the aposteriori
error indicator and the actual process of
refinement.

• We impose conditions on the refinement process
such that a 1-irregular mesh is obtained (i.e., only
one hanging node per edge can exist in the mesh).
Note that this implies that no single triangle can
have more than two triangles as neighbors.
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Marking vs Refinement, contd.
• Note that no continuity of solution constraints are

imposed on the midpoint nodes of the edges in
the DG case whereas with Standard Galerkin
these nodes are not free.

• We will focus here on the Marking Strategy for
refinement only, noting that a similar coarsening
marking strategy can be implemented for
evolution PDEs.
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Marking Strategy
Assume that on Th that the solution uγ

h has been
calculated, where η is the estimator being used.
(Dörfler, 1996)

1. ∀K ∈ Th

(a) Calculate ηK

(b) Calculate ηmax

(c) Calculate η2
Th

=

�

K∈Th
η2

K

2. s = 0, τ = 1.

3. While s < θ2η2
Th

(a) τ = τ − ν

(b) ∀K ∈ Th

i. If K is not marked AND If ηK > τηmax

A. Mark K for refinement

B. s = s + η2
K
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Marking Strategy, contd.
• This algorithm is guaranteed to stop because as

τ → 0 eventually s will exceed the threshold
θ2η2

Th
.

• Choices for θ, ν greatly affect how many
elements are marked each sweep through Th.

• Once this algorithm finishes, the set of marked
triangles have the largest estimated error and are
then refined, after which the solver is called to
produce new error estimates and the process is
repeated until the total estimated error is less than
some tolerance ε, i.e., η2

Th
< ε2.
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Marking Strategy, contd.
Conceptually this process can be thought of in the
following manner:

• Consider a point singularity in Ω, the typical error
distribution will be high for triangles near the
singularity and low for triangles away from the
singularity.

• Multiple sweeps through Th are made with the
largest error triangles marked first.

• After a sweep through Th is made, if the
accumulated (marked) error is still less than the
threshold θ of the total error, then triangles with
less error are considered for marking, controlled
by τ and ν.
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Parameter Choices
Question. How does the choice of θ, ν, and ε affect
the resultant meshes (and thus the approximate
solutions)?
To investigate this question better, we will use
Preconditioned Conjugate Gradient (with Full
Multigrid as the preconditioner) to obtain
approximations to the following problems:

P1 Smooth function
P2 Point singularity in the interior of Ω
P3 Mixed boundary condition induced gradient

mismatch at a number of points on the boundary.
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Parameter Choices, contd.
We will analyze how many triangles are refined and

reduction in total estimated error for various choices

of θ, ν, and ε. The finite element implementation uses

quadratic (r = 3) functions to approximate the solu-

tion on each triangle in Th.
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P1






−∆u = 2π2 sin(πx) cos(πx) in Ω

u = 0 on ΓD

(P1)

x1

x2

(1, 1)

1

1

0

ΩΓD ΓD

ΓD

ΓD

Figure 1: P1 Geometry
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P1 Solution

 run2d: Lvl = 4
NT = 1834, NP = 1755

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X
Y

Z

u

0.0×100

1.0×100

Y 0

1
X

0

1

Figure 2: θ = 0.8, ν = 0.0005, ε = 0.02
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P1 Solution

 run2e: Lvl = 4
NT = 2113, NP = 1934
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Figure 3: θ = 0.9, ν = 0.0005, ε = 0.02
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P2






−∆u = 0 in Ω

u = r2/3 sin(2/3θ) on ΓD

(P2)
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Figure 4: P2 Geometry
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P2 Solution

 run4e: Lvl = 8
NT = 346, NP = 354
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Figure 5: θ = 0.85, ν = 0.0005, ε = 0.02
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P2 Solution
Tue Mar 22 22:28:17 2005

 run5a: Lvl = 8
NT = 1051, NP = 1026
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Figure 6: θ = 0.95, ν = 0.0005, ε = 0.001
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P2 Meshes

Figure 7: θ = (0.9, 0.85), ν = 0.0005, ε = 0.001
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P3














−∆u = 0 in Ω

u = 0 on ΓD

∂u
∂n

= −1 on ΓN

(P3)
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Figure 8: P3 Geometry
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P3 Solution
Tue Mar 22 22:43:03 2005

 run7a: Lvl = 8
NT = 2870, NP = 3215
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Figure 9: θ = 0.95, ν = 0.0005, ε = 0.001
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P3 Meshes

Figure 10: θ = (0.90, 0.85), ν = 0.0005, ε = 0.001
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Conclusions
• Efficient procedure for selectively refining only

the largest estimated errors under control of θ, ν,
and ε.

• This procedure eliminates the need for sorting the
triangles by estimated error.

• Flexible marking strategy can be modified to
include marking triangles for coarsening.

• ν should be chosen small enough to select just
enough triangles to mark for refinement without
overrefining the mesh.
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Conclusions, contd.
• Large θ coupled with small ν produces a good

mesh for singularity problems.
• ε should be chosen small enough only once one

has an understanding of the behavior of the
estimator for the particular problem under study.

• The accuracy of the iterative solver might have to
be increased for highly refined meshes.
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