
Data Processing
for

Mathematicians
Michael A. Saum

University of Tennessee

Department of Mathematics

Data ProcessingforMathematicians – p.1/30

Overview
• gcc Compiler
• Libraries
• Useful Libraries
• Graphics Programs
• gdb Debugger
• Profiling
• Choosing the right Application
• References

Data ProcessingforMathematicians – p.2/30

Recall · · ·
• The previous seminar covered the very basics of

programming in C in UNIX.
• One usually writes a program to help solve a

particular problem.
• Algorithm development and coding is usually

only part of the solution.
• Other parts include debugging, benchmarking,

and analysis of results.
• One goal of this seminar is to provide

information on the various tools and applications
which can aid in obtaining complete solutions.

Data ProcessingforMathematicians – p.3/30

Compile-Link
• When one compiles a program, a binary

executeable version of the source code is
produced, which can subsequently be run on the
machine you are on.

• What is usually hidden from the programmer is
the fact that this is actually a two step process.

• The first step (compile) is to translate the source
code into a format which contains an
"intermediate" machine code translation called an
object file.

• The second step (link) is to transform the object
code into a machine language or executeable file
which can then be run on the machine you are on.

Data ProcessingforMathematicians – p.4/30

Compile-Link, contd.
• Note that object files if saved will usually have

the extension *.o, and are essentially machine
code "almost" ready to run.

• Do not edit object or executeable files, they are
binary files!

• The standard UNIX convention is that the
executeable is named a.out if no name is
specified to the compiler for the executeable.

• When a program is run on UNIX, the executeable
is loaded into memory and machine instructions
are executed.

Data ProcessingforMathematicians – p.5/30

gcc compiler
• The gcc compiler is the default C, C++, and

FORTRAN compiler on most LINUX systems.
• It is considered to be Open Source in that there is

no fee for using the compiler.
• Other compilers exist but usually cost $. For

example, on agnesi, fubini, fatou,
turing the Intel Compilers exist with limited
licences.

• icc is the Intel C/C++ compiler.
• ifc is the Intel FORTRAN compiler (currently

available only on agnesi.)

Data ProcessingforMathematicians – p.6/30

gcc , contd.
• gcc is used to compile C programs, g++ is used

to compile C++ programs, and g77 is used to
compile FORTRAN programs.

• All three share some basic command line options
which control various aspects of the compilation
process.

• Unless otherwise specified, I will use the term
gcc to refer to all three compilers gcc, g++,
g77.

Data ProcessingforMathematicians – p.7/30

gcc Options
• For the most part, gcc compile options can go in

any order in the command line with the exception
of the file(s) to process, which should go last.

• To just compile sample.c and produce an
object file sample.o with no executeable

gcc -c sample.c

• To just link object code sample.o and produce
an executeable file named sample

gcc -o sample sample.o

• To compile and link sample.c and produce an
executeable file named sample

gcc -o sample sample.c

Data ProcessingforMathematicians – p.8/30

gcc Options, contd.
The following optimization options can improve
program performance:

• -O0 Do not optimize.

• -O or -O1 Optimize. Optimizing compilation takes somewhat more time, and a lot more

memory for a large function. Without -O, the compiler’s goal is to reduce the cost of

compilation and to make debugging produce the expected results. With -O, the compiler

tries to reduce code size and execution time, without performing any optimizations that

take a great deal of compilation time.

• -O2 Optimize even more. GCC performs nearly all supported optimizations that do not

involve a space-speed tradeoff. The compiler does not perform loop unrolling or function

inlining when you specify -O2. As compared to -O, this option increases both

compilation time and the performance of the generated code.

• -O3 Optimize yet more. -O3 turns on all optimizations specified by -O2 and also turns on

the -finline-functions and -frename-registers options.

• -Os Optimize for size.

Data ProcessingforMathematicians – p.9/30

gcc Options, contd.
• -pg Generate extra code to write profile information suitable for the analysis program

"gprof". You must use this option when compiling the source files you want data about,

and you must also use it when linking.

• -g Produce debugging information in the operating system’s native format. GDB can

work with this debugging information.

• -Wall This enables all the warnings about constructions that some users consider

questionable, and that are easy to avoid (or modify to prevent the warning), even in

conjunction with macros.

• -Werror Make all warnings into errors.

• -Idir Add the directory dir to the head of the list of directories to be searched for header

files.

• -Ldir Add directory dir to the list of directories to be searched for -l.

Data ProcessingforMathematicians – p.10/30

gcc Options, contd.
-llibrary Search the library named library when linking.

• The only difference between using an -l option and specifying a file name is that -l

surrounds library with lib and .a and searches several directories.

• The linker searches a standard list of directories for the library, which is actually a file

named liblibrary.a. The linker then uses this file as if it had been specified precisely by

name.

• It makes a difference where in the command you write this option; the linker searches and

processes libraries and object files in the order they are specified. Thus, foo.o -lz

bar.o searches library z after file foo.o but before bar.o. If bar.o refers to functions in z,

those functions may not be loaded.

• The directories searched include several standard system directories plus any that you

specify with -L.

• Normally the files found this way are library files—archive files whose members are

object files. The linker handles an archive file by scanning through it for members which

define symbols that have so far been referenced but not defined. But if the file that is

found is an ordinary object file, it is linked in the usual fashion.

Data ProcessingforMathematicians – p.11/30

Libraries
• The previous slide alluded to the concept of library files, which needs clarification.

• A library is a file containing several object files, that can be used as a single entity in a

linking phase of a program. Normally the library is indexed, so it is easy to find symbols

(functions, variables and so on) in them. For this reason, linking a program whose object

files are ordered in libraries is faster than linking a program whose object files are

separate on the disk. Also, when using a library, one have fewer files to look for and

open, which even further speeds up linking.

• Unix systems (as well as most other modern systems) allow us to create and use two

kinds of libraries - static libraries and shared (or dynamic) libraries.

• Static libraries usually have an extension *.a

• Shared libraries usually have an extension *.so

• Static libraries are just collections of object files that are linked into the program during

the linking phase of compilation, and are not relevant during runtime.

Data ProcessingforMathematicians – p.12/30

Libraries, contd.
• Shared libraries (also called dynamic libraries) are linked into the program in two stages.

First, during compile time, the linker verifies that all the symbols (again, functions,

variables and the like) required by the program, are either linked into the program, or in

one of its shared libraries. However, the object files from the dynamic library are not

inserted into the executable file. Instead, when the program is started, a program in the

system (called a dynamic loader) checks out which shared libraries were linked with the

program, loads them to memory, and attaches them to the copy of the program in memory.

• The basic tool used to create static libraries is a program called ar, for ’archiver’.

• This program can be used to create static libraries (which are actually archive files),

modify object files in the static library, list the names of object files in the library, and so

on.

Data ProcessingforMathematicians – p.13/30

Libraries, contd.
• In order to create a static library, one can use a command like this:

ar rc libutil.a util file.o util net.o util math.o

• This command creates a static library named ’libutil.a’ and puts copies of the object files

"util_file.o", "util_net.o" and "util_math.o" in it. If the library file already exists, it has the

object files added to it, or replaced, if they are newer than those inside the library.

• After an archive is created, or modified, there is a need to index it. This index is later used

by the compiler to speed up symbol-lookup inside the library, and to make sure that the

order of the symbols in the library won’t matter during compilation.

• The command used to create or update the index is called ranlib, and is invoked as

follows:

ranlib libutil.a

• To list the contents (index) of a library, use the command

nm -s libutil.a

Data ProcessingforMathematicians – p.14/30

Useful Libraries
• In most cases, one will not have to worry about

creating libraries as described above.
• Two excellent source code repositories are

GAMS and NETLIB.
• GAMS - Guide to Available Mathematical

Software
http://gams.nist.gov/

• NETLIB
http://www.netlib.org/

• There are many other sources of source code on
the internet, most come packaged in such a way
that when compiled (with a Makefile) a library is
created automatically.

Data ProcessingforMathematicians – p.15/30

Useful Libraries, contd.
Available within the Math department on agnesi, fubini,
fatou, turing are the following collections of functions for
which libraries exist:

• BLAS - Basic Linear Algebra System. This set of routines perform Vector,

Matrix-Vector, and Matrix-Matrix operations.

• LAPACK - Linear Algebra Package. This set of routines perform Linear Algebra

operations such as solving linear systems, matrix factorization, and eigenvalue

calculations.

• ATLAS - Automatically Tuned Linear Algebra System. This is a set of optimized (for the

machine you are on) BLAS and a subset of LAPACK routines.

• GSL - Gnu Scientific Library. This is a set of routines which provides a great number of

functions that are of interest to scientific calculation.

• GLIB - A part of the GTK+ package, this collection of routines provides many utility

routines used in application development on UNIX. Using routines provided in glib one

can introduce into one’s application data structures such as linked lists (single and

double), N-ary trees, and hash tables relatively easily. In addition, if one desires to write

an application that has a GUI, routines exist for standard X-window application

development.

Data ProcessingforMathematicians – p.16/30

GSL Library
Complex Numbers Roots of Polynomials Special Functions

Vectors and Matrices Permutations Combinations

Sorting BLAS Support Linear Algebra

Eigensystems Fast Fourier Transforms Quadrature

Random Numbers Quasi-Random Sequences Random Distributions

Statistics Histograms N-Tuples

Monte Carlo Integration Simulated Annealing Differential Equations

Interpolation Numerical Differentiation Chebyshev Approximations

Series Acceleration Discrete Hankel Transforms Root-Finding

Minimization Least-Squares Fitting Physical Constants

Data ProcessingforMathematicians – p.17/30

Example
It is probably best at this time to illustrate how one
can implement some of the above concepts with an
example.

• The source code and Makefile are attached as
supplementary material.

• The program utilizes the gsl library for access
to some special functions.

• The program then generates data in an output file
for later processing and graphical display.

Data ProcessingforMathematicians – p.18/30

Example, contd.
• example.c

• Line 13 requests to include a file necessary for accesing gsl bessel function

routines.
• Lines 20 and 56-60 define an auxiliary function; put in to obtain timing information

from profiling.
• example when run will produce output to stdout (Lines 40, 47, and 50), and will

dump raw data to the file example.dat.

• Makefile

• Line 6 describes additional paths to look for include files.
• Line 7 describes additional paths AND libraries to look for code for functions

which are called from your source code.
• Line 8 describes compiler and linker option flags to be used. In this example, the

executeable example will be able to be debugged (using gdb) as well as

generating profile information. In addition, all compiler warnings will be printed

and the compilation will stop on all warnings, with basic optimization (level 1)

being done.

Data ProcessingforMathematicians – p.19/30

Graphing
There are a number of options to generating graphs, both 2D and
3D as well as putting together sequences of pictures to produce a
movie. The most fundamental rule is to create graphics with
minimal amount of work which also meet your analysis needs.

• matlab - Integrated GUI platform combining calculations and display of calculations.

Can handle just about anything displayed graphically, takes time to get it right. Nice for

making movies.

• xmaple - Integrated GUI platform combining symbolic math and display of results. As

good if not better than matlab at displaying 3D and movies.

• gnuplot - non GUI, 2D/3D, batch command files. One of the quickest ways to import

data and graph it.

• xmgrace - GUI, 2D, batch command files, quick and clean linear and nonlinear

regression analysis. Has a non GUI interface and language available (grace).

• R - non GUI, statistics based graphs are its specialty. Much more than just graphics

though.

• gimp - GUI, when you have to edit the pixels of an image.

Data ProcessingforMathematicians – p.20/30

Graphing, contd.
• All of the above applications can read in and process (or

parse) the data into different data sets which can then be

graphed or displayed in a wide variety of ways.

• My philosophy is basically to generate files containing

multiple columns of data, and then bring them in one of the

above graphics programs and tune the graphs to meet my

needs.

• matlab, maple, R all provide full featured

programming environments which means that a separate C

program may not have to be written.

• matlab, maple may not be the best graphics choice for

very large data sets.

Data ProcessingforMathematicians – p.21/30

gnuplot
• gnuplot can be started by just typing gnuplot on the command line. Once started,

type help to obtain more information about the commands.

• This mode is great for exploring gnuplot capabilities and commands that are available.

• Once one has figured out the details of what commands gnuplot needs for your plot, put

these commands into a separate file (see example.gnu listing in the supplementary

materials.)

• To generate plots then,

gnuplot example.gnu
• Multiple plots can be generated at one time.

• There are a lot of tutorials on the web. See also

http://www.gnuplot.info/

Data ProcessingforMathematicians – p.22/30

xmgrace
• grace provides a non GUI interface to
xmgrace

• xmgrace starts up a GUI interface to full
featured 2D plotter and data analyzer.

• It is strongly recommended that one view the
grace documentation located at:

http://plasma-gate.weizmann.ac.il/Grace/

• Compare the plots printed out using xmgrace
and gnuplot for our Bessel Function example.

Data ProcessingforMathematicians – p.23/30

ImageMagick
• ImageMagick is a collection of routines which

allow one to convert one graphics image format
to another.

• It is best to embed postscript (.ps) or encapsulated
postscript (.eps) files into LATEXdocuments. Using
convert one can easily perform this task, no
matter what the original graphics format was in.

• animate can assemble together a number of
still images and make it look like a movie.

• See the man pages for more information
regarding this set of programs.

Data ProcessingforMathematicians – p.24/30

gimp
• This is the program if you ever have to edit the

detail on an image.
• Many options, similar to Adobe photoshop in that

it can allow one to perform a lot of
transformations on images, such as filtering,
sharpening, etc.

• I use only as a last resort when nothing else
works for converting part of an image into a more
manageable image size and format.

• For more information, refer to
http://www.gimp.org/

Data ProcessingforMathematicians – p.25/30

R
• R is a full featured system which is basically a

cross between SAS and Matlab.
• The best place to find out more information is at:

http://www.r-project.org/

• There is a ton of documentation and some great
tutorials available on the internet through the
above site.

• This application can be extended in a wide
variety of ways to include one’s own C libraries,
access to large databases, etc.

Data ProcessingforMathematicians – p.26/30

gdb
• gdb is what is called a debugger. There are other debuggers such as dbx, which may or

may not be installed on a system.

• It basically allows one to single step through a program, line by line, and display

variables contents so as to track down bugs in programs.

• In order to effectively use gdb, one must have compiled the program being debugged

with the -g compiler option flag.

• For more information, refer to

http://www.gnu.org/software/gdb/gdb.html

• Only use a debugger when manual debugging (i.e., write statements) fails.

Data ProcessingforMathematicians – p.27/30

gprof
• On applications which require a lot of CPU time

to run, it might be worthwhile to analyze how
much time an application spends in each routine.

• gprof can help in identifying the "CPU Hogs"
of your program.

• I order to use gprof, one must have compiled
and linked the program being profiled with the
-pg compiler flag.

• More information is available at:
http://www.cs.utah.edu/dept/old/texinfo/as/gprof toc.html

Data ProcessingforMathematicians – p.28/30

Choosing the RIGHT applica-
tion

• The most important part of processing data is to utilize the tools available to produce the

results one wants with the least amount of hassle.

• For the quick and clean programming integrating with adequate graphics capability,

matlab or maple or R are good choices.

• For statistics calculations and display, R is very good, although it’s interface and language

are a bit strange at first.

• There is nothing wrong with writing a C or FORTRAN program to generate data files

which are subsequently processed later by another program such as gnuplot or

xmgrace.

• If one has a specialized mathematical computing need, let google search for you. You

never know, someone may have already developed the code to solve your problem.

Data ProcessingforMathematicians – p.29/30

References
• MemCheck - Check for Memory Problems

http://hald.dnsalias.net/projects/memcheck/

• ElectricFence - Check for Memory Problems
http://linux.maruhn.com/sec/electricfence.html

• Valgrind - Detailed Memory Analysis tools
http://valgrind.kde.org/

• New applications are being developed all of the
time for Linux. Check a very good repository at:

http://freshmeat.net/

• For extracting particular pieces of data from large
data files, perl is the language of choice, see

www.perl.com

Data ProcessingforMathematicians – p.30/30

	Overview
	Recall $cdots $
	Compile-Link
	Compile-Link, contd.
	{	t gcc} compiler
	{	t gcc} , contd.
	{	t gcc} Options
	{	t gcc} Options, contd.
	{	t gcc} Options, contd.
	{	t gcc} Options, contd.
	Libraries
	Libraries, contd.
	Libraries, contd.
	Useful Libraries
	Useful Libraries, contd.
	GSL Library
	Example
	Example, contd.
	Graphing
	Graphing, contd.
	{	t gnuplot}
	{	t xmgrace}
	ImageMagick
	{	t gimp}
	{	t R}
	{	t gdb}
	{	t gprof}
	Choosing the RIGHT application
	References

